A007968 Type of happy factorization of n.
0, 0, 1, 2, 0, 1, 1, 2, 2, 0, 1, 2, 1, 1, 1, 2, 0, 1, 1, 2, 1, 1, 1, 2, 2, 0, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 0, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 0, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 0, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 0, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 0, 1, 1, 2, 2
Offset: 0
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..300
- J. H. Conway, On Happy Factorizations, J. Integer Sequences, Vol. 1, 1998, #1.
- Reinhard Zumkeller, Initial Happy Factorization Data for n <= 250
Programs
-
Haskell
a007968 = (\(hType,,,_,_) -> hType) . h h 0 = (0, 0, 0, 0, 0) h x = if a > 0 then (0, a, a, a, a) else h' 1 divs where a = a037213 x divs = a027750_row x h' r [] = h' (r + 1) divs h' r (d:ds) | d' > 1 && rest1 == 0 && ss == s ^ 2 = (1, d, d', r, s) | rest2 == 0 && odd u && uu == u ^ 2 = (2, d, d', t, u) | otherwise = h' r ds where (ss, rest1) = divMod (d * r ^ 2 + 1) d' (uu, rest2) = divMod (d * t ^ 2 + 2) d' s = a000196 ss; u = a000196 uu; t = 2 * r - 1 d' = div x d hs = map h [0..] hCouples = map (\(, factor1, factor2, , _) -> (factor1, factor2)) hs sqrtPair n = genericIndex sqrtPairs (n - 1) sqrtPairs = map (\(, , _, sqrt1, sqrt2) -> (sqrt1, sqrt2)) hs -- Reinhard Zumkeller, Oct 11 2015