A007969 Rectangular numbers.
2, 5, 6, 10, 12, 13, 14, 17, 18, 20, 21, 22, 26, 28, 29, 30, 33, 34, 37, 38, 39, 41, 42, 44, 45, 46, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 65, 66, 68, 69, 70, 72, 73, 74, 76, 77, 78, 82, 84, 85, 86, 89, 90, 92, 93, 94, 95, 97, 98, 101, 102, 105, 106, 108, 109
Offset: 1
Keywords
Examples
From _Wolfdieter Lang_, Sep 18 2015: (Start) a(1) = 5 = 5*1 and 5*1^2 - 1*2^2 = 1. a(7) = 14 = 2*7 and 2*2^2 - 7*1^2 = 1. (End)
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..200
- J. H. Conway, On Happy Factorizations, J. Integer Sequences, Vol. 1, 1998, #1.
- Wolfdieter Lang, Proof of a Conjecture Related to the 1-Happy Numbers.
Crossrefs
Programs
-
Haskell
a007969 n = a007969_list !! (n-1) a007969_list = filter ((== 1) . a007968) [0..] -- Reinhard Zumkeller, Oct 11 2015
-
Mathematica
r[b_, c_] := (red = Reduce[x>0 && y>0 && b*x^2 + 1 == c*y^2, {x, y}, Integers] /. C[1] -> 1 // Simplify; If[Head[red] === Or, First[red], red]); f[128] = {}(* to speed up *); f[n_] := f[n] = If[IntegerQ[Sqrt[n]], {}, Do[c = n/b; If[(r0 = r[b, c]) =!= False, {x0, y0} = {x, y} /. ToRules[r0]; Return[{b, c, x0, y0}]], {b, Divisors[n] // Most}]]; A007969 = Reap[Table[Print[n, " ", f[n]]; If[f[n] != {} && f[n] =!= Null, Sow[n]], {n, 1, 130}]][[2, 1]] (* Jean-François Alcover, Jun 26 2012, updated Sep 18 2015 *)
Formula
a(n) is in the sequence if a(n) = C*B with integers B >= 1 and C >= 2, such that C*S^2 - B*R^2 = 1 has an integer solution (without loss of generality one may take S and R positive). See the Conway link. - Wolfdieter Lang, Sep 18 2015
Comments