A007999 a(n) is the number of permutations w of 1,2,...,n such that both w and w^{-1} are alternating.
1, 1, 1, 1, 2, 3, 8, 19, 64, 213, 880, 3717, 18288, 92935, 531440, 3147495, 20525168, 138638825, 1015694832, 7700244745, 62623847536, 526317901451, 4705365925872, 43407723925499, 423149546210416, 4250149857500861, 44868038386273776, 487341646372204813
Offset: 0
Keywords
Examples
The only alternating permutation of 1,2,3 whose inverse is alternating is 132. The two alternating permutations of 1,2,3,4 whose inverses are alternating are 1324 and 3412.
Links
- H. O. Foulkes, Tangent and secant numbers and representations of symmetric groups, Discrete Math. 15 (1976), no. 4, 311-324.
- R. P. Stanley, Alternating permutations and symmetric functions, arXiv:math/0603520 [math.CO], 2006. [_Joel B. Lewis_, May 21 2009]
Crossrefs
Programs
-
Mathematica
m = 27; e[n_] := If[EvenQ[n], Abs[EulerE[n]], Abs[(2^(n+1)(2^(n+1)-1)*BernoulliB[ n+1])/(n+1)]]; u[x_] := Log[(1+x)/(1-x)]/2; Sum[e[2k+1]^2 u[x]^(2k+1)/(2k+1)!, {k, 0, m}] + (1-x^2)^(-1/2) Sum[e[2k]^2* u[x]^(2k)/(2k)!, {k, 0, m}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Feb 24 2019 *)
Formula
G.f.: Sum_{k>=0} E_{2k+1}^2 u^(2k+1)/(2k+1)! + (1-x^2)^(-1/2) Sum_{k>=0} E_{2k}^2 u^(2k)/(2k)!, where E_j is an Euler number (A000111) and u = (1/2)*log((1+x)/(1-x)). - Richard Stanley, Jan 21 2006
Extensions
More terms from Vladeta Jovovic, May 15 2007
Two initial terms (thus correcting first term index, and consequent correction of Mathematica code) added by David Bevan, Feb 10 2020