A008000 Coordination sequence T1 for Zeolite Code ABW and ATN.
1, 4, 10, 21, 36, 54, 78, 106, 136, 173, 214, 256, 306, 360, 414, 477, 544, 610, 686, 766, 844, 933, 1026, 1116, 1218, 1324, 1426, 1541, 1660, 1774, 1902, 2034, 2160, 2301, 2446, 2584, 2738, 2896, 3046, 3213, 3384, 3546, 3726, 3910, 4084, 4277, 4474, 4660
Offset: 0
References
- W. M. Meier, D. H. Olson and Ch. Baerlocher, Atlas of Zeolite Structure Types, 4th Ed., Elsevier, 1996
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- R. W. Grosse-Kunstleve, Coordination Sequences and Encyclopedia of Integer Sequences
- R. W. Grosse-Kunstleve, G. O. Brunner and N. J. A. Sloane, Algebraic Description of Coordination Sequences and Exact Topological Densities for Zeolites, Acta Cryst., A52 (1996), pp. 879-889.
- International Zeolite Association, Database of Zeolite Structures
- Sean A. Irvine, Generating Functions for Coordination Sequences of Zeolites, after Grosse-Kunstleve, Brunner, and Sloane
- Index entries for Coordination Sequences.
- Index entries for linear recurrences with constant coefficients, signature (1,0,2,-2,0,-1,1).
Programs
-
Magma
I:=[1,4,10,21,36,54,78,106]; [n le 8 select I[n] else Self(n-1)+2*Self(n-3)-2*Self(n-4)-Self(n-6)+Self(n-7): n in [1..50]]; // Vincenzo Librandi, Jun 10 2013
-
Mathematica
CoefficientList[Series[(-z^7 - 3 z^6 - 6 z^5 - 9 z^4 - 9 z^3 - 6 z^2 - 3 z - 1)/((z - 1)^3 (z^2 + z + 1)^2), {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 27 2011 *)
-
PARI
a(n)=if(n,my(m=divrem(n,3));19*m[1]^2+if(m[2],if(m[2]==1,13*m[1]+4,25*m[1]+10),2),1) \\ Charles R Greathouse IV, Jun 28 2011
Formula
a(3m)=19m^2+2, a(3m+1)=19m^2+13m+4, a(3m+2)=19m^2+25m+10, for m>0. [N. J. A. Sloane]
G.f.: (1+3*x+6*x^2+9*x^3+9*x^4+6*x^5+3*x^6+x^7)/((1-x)^3*(1+x+x^2)^2). [Vladimir Joseph Stephan Orlovsky]