cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008217 a(n) = floor(n/4)*floor((n+1)/4).

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 2, 4, 4, 4, 6, 9, 9, 9, 12, 16, 16, 16, 20, 25, 25, 25, 30, 36, 36, 36, 42, 49, 49, 49, 56, 64, 64, 64, 72, 81, 81, 81, 90, 100, 100, 100, 110, 121, 121, 121, 132, 144, 144, 144, 156, 169, 169, 169, 182, 196, 196, 196, 210, 225, 225, 225, 240, 256, 256, 256, 272, 289, 289, 289, 306
Offset: 0

Views

Author

Keywords

Comments

Oblong numbers, squares and quarter-squares are subsequences: a(A004767(n)) = A002378(n); a(A008586(n)) = A000290(n); a(A005408(n)) = A002620(n). - Reinhard Zumkeller, Oct 09 2011

Crossrefs

Programs

  • Haskell
    a008217 n = a008217_list !! n
    a008217_list = zipWith (*) (tail qs) qs where qs = map (`div` 4) [0..]
    -- Reinhard Zumkeller, Oct 09 2011
    
  • Mathematica
    a[n_] := Floor[n/4] * Floor[(n+1)/4]; Array[a, 100, 0] (* Amiram Eldar, May 10 2025 *)
    LinearRecurrence[{2,-2,2,0,-2,2,-2,1},{0,0,0,0,1,1,1,2},80] (* Harvey P. Dale, Aug 18 2025 *)
  • PARI
    a(n) = floor(n/4)*floor((n+1)/4); /* Joerg Arndt, Mar 31 2013 */
    
  • Python
    def A008217(n): return (n>>2)*(n+1>>2) # Chai Wah Wu, Feb 02 2023

Formula

G.f.: -x^4*(x^2-x+1) / ((x-1)^3*(x+1)*(x^2+1)^2). - Colin Barker, Mar 31 2013
From Amiram Eldar, May 10 2025: (Start)
Sum_{n>=4} 1/a(n) = Pi^2/2 + 1.
Sum_{n>=4} (-1)^n/a(n) = Pi^2/6 - 1. (End)