cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008253 Coordination sequence for diamond.

Original entry on oeis.org

1, 4, 12, 24, 42, 64, 92, 124, 162, 204, 252, 304, 362, 424, 492, 564, 642, 724, 812, 904, 1002, 1104, 1212, 1324, 1442, 1564, 1692, 1824, 1962, 2104, 2252, 2404, 2562, 2724, 2892, 3064, 3242, 3424, 3612, 3804, 4002, 4204, 4412, 4624, 4842, 5064, 5292, 5524
Offset: 0

Views

Author

Keywords

References

  • Inorganic Crystal Structure Database: Collection Code 9327.

Crossrefs

Programs

  • Mathematica
    {1}~Join~Table[2 (2 + Sum[Floor[(5 k + 3)/2], {k, n - 1}]), {n, 50}] (* Alexander Adamchuk, May 23 2006, edited by Michael De Vlieger, May 31 2022 *)
  • PARI
    Vec((1 + 2*x + 4*x^2 + 2*x^3 + x^4) / ((1 - x)^3*(1 + x)) + O(x^60)) \\ Colin Barker, Mar 21 2017

Formula

G.f.: (1 + 2*x + 4*x^2 + 2*x^3 + x^4) / ((1 - x)^3*(1 + x)).
a(2*m) = 10*m^2+2, a(2*m+1) = 10*m^2+10*m+4 (N. J. A. Sloane).
Apart from first term, first differences of A007904(n). - Alexander Adamchuk, May 23 2006
a(n) = 2* ( 2 + Sum_{k=1..n-1} floor((5*k+3)/2) ). - Alexander Adamchuk, May 23 2006
From Colin Barker, Mar 21 2017: (Start)
a(n) = (5*n^2 + 4)/2 for n>0 and even.
a(n) = (5*n^2 + 3)/2 for n odd.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>4.
(End)