cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A008264 Coordination sequence for tridymite, lonsdaleite, and wurtzite.

Original entry on oeis.org

1, 4, 12, 25, 44, 67, 96, 130, 170, 214, 264, 319, 380, 445, 516, 592, 674, 760, 852, 949, 1052, 1159, 1272, 1390, 1514, 1642, 1776, 1915, 2060, 2209, 2364, 2524, 2690, 2860, 3036, 3217, 3404, 3595, 3792, 3994, 4202, 4414, 4632, 4855, 5084, 5317, 5556, 5800
Offset: 0

Views

Author

Keywords

References

  • Inorganic Crystal Structure Database: Collection Code 29343
  • Michael O'Keeffe, Topological and geometrical characterization of sites in silicon carbide polytypes, Chemistry of Materials 3 (2) (1991), 332-335. (Eq. (2) gives an empirical formula for a(n). - N. J. A. Sloane, Apr 07 2018)

Crossrefs

Cf. A008524 for 4-D analog, A008253 for diamond.
Cf. A217511 for theta series.

Programs

  • Mathematica
    a[n_] := (m = Quotient[n, 4]; k = Mod[n, 4]; 42*m^2 + 21*k*m + Switch[k, 0, 2, 1, 4, 2, 12, 3, 25]); a[0]=1; Table[a[n], {n, 0, 47}] (* Jean-François Alcover, Oct 11 2012, from the first formula *)
    Join[{1}, Table[1 + (42 n^2 + (1 + (-1)^n) (3 + 2 (-1)^((n - 1) n/2)) + 6)/16, {n, 50}]] (* Bruno Berselli, Jul 24 2013 *)
    LinearRecurrence[{2,-1,0,1,-2,1},{1,4,12,25,44,67,96},20] (* Harvey P. Dale, Dec 27 2016 *)
  • PARI
    a(n)=if(n, 1+(42*n^2+(1+(-1)^n)*(3+2*(-1)^((n-1)*n/2))+6)/16, 1) \\ Charles R Greathouse IV, Feb 10 2017

Formula

a(4*m+k) = 42*m^2 + 21*k*m + [ 2, 4, 12, 25 ], 0 <= k < 4 (N. J. A. Sloane).
a(n) = 1 + (42*n^2 + (1 + (-1)^n)*(3 + 2*(-1)^((n - 1)*n/2)) + 6)/16 for n > 0, a(0) = 1. - Bruno Berselli, Jul 24 2013
G.f.: (1 + 2*x + 5*x^2 + 5*x^3 + 5*x^4 + 2*x^5 + x^6)/((1 - x)^3*(1 + x + x^2 + x^3)). - Bruno Berselli, Jul 24 2013

A007904 Crystal ball sequence for diamond.

Original entry on oeis.org

1, 5, 17, 41, 83, 147, 239, 363, 525, 729, 981, 1285, 1647, 2071, 2563, 3127, 3769, 4493, 5305, 6209, 7211, 8315, 9527, 10851, 12293, 13857, 15549, 17373, 19335, 21439, 23691, 26095, 28657, 31381, 34273, 37337, 40579, 44003, 47615, 51419, 55421, 59625, 64037
Offset: 0

Views

Author

Keywords

Comments

Binomial transform of [1, 4, 8, 4, 2, -4, 8, -16, 32, -64, 128, ...]. - Gary W. Adamson, Feb 07 2010

Crossrefs

Partial sums of A008253.

Programs

  • Maple
    gf:= -(x^4+2*x^3+4*x^2+2*x+1)/((x-1)^2*(x^2-1)*(1-x)):
    seq(coeff(series(gf,x,n+1),x,n), n=0..50);
  • Mathematica
    b[0]=1; b[1]=4; b[2]=8; b[3]=4; b[n_] := (-1)^n*2^(n-3); a[n_] := Sum[Binomial[n, k]*b[k], {k, 0, n}]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Aug 08 2012, after Gary W. Adamson *)
    LinearRecurrence[{3,-2,-2,3,-1},{1,5,17,41,83},80] (* Harvey P. Dale, Jan 22 2024 *)

Formula

G.f.: -(x^4 + 2*x^3 + 4*x^2 + 2*x + 1)/((x-1)^2*(x^2-1)*(1-x)).
a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5). - Wesley Ivan Hurt, Jan 20 2024

A010022 a(0) = 1, a(n) = 40*n^2 + 2 for n>0.

Original entry on oeis.org

1, 42, 162, 362, 642, 1002, 1442, 1962, 2562, 3242, 4002, 4842, 5762, 6762, 7842, 9002, 10242, 11562, 12962, 14442, 16002, 17642, 19362, 21162, 23042, 25002, 27042, 29162, 31362, 33642, 36002, 38442, 40962, 43562, 46242, 49002, 51842, 54762, 57762, 60842
Offset: 0

Views

Author

Keywords

Comments

First bisection of A005901. - Bruno Berselli, Feb 07 2012

Crossrefs

Cf. A206399.

Programs

  • Magma
    [1] cat [40*n^2+2: n in [1..50]]; // Vincenzo Librandi, Aug 03 2015
  • Mathematica
    Join[{1}, 40 Range[39]^2 + 2] (* Bruno Berselli, Feb 07 2012 *)
    Join[{1}, LinearRecurrence[{3, -3, 1}, {42, 162, 362}, 50]] (* Vincenzo Librandi, Aug 03 2015 *)

Formula

G.f.: (1+x)*(1+38*x+x^2)/(1-x)^3; a(n) = A008253(4n). - Bruno Berselli, Feb 07 2012
E.g.f.: (x*(x+1)*40+2)*e^x-1. - Gopinath A. R., Feb 14 2012
Sum_{n>=0} 1/a(n) = 3/4 + sqrt(5)/40*Pi*coth(Pi*sqrt(5)/10) = 1.03983104279172.. - R. J. Mathar, May 07 2024
a(n) = 2*A158493(n), n>0. - R. J. Mathar, May 07 2024
a(n) = A195317(n)+A195317(n+1) = 2+10*A016742(n), n>0. - R. J. Mathar, May 07 2024
Showing 1-3 of 3 results.