A008293 Triangle of coefficients in expansion of D^n (tan x) in powers of tan x.
1, 1, 1, 2, 2, 2, 8, 6, 16, 40, 24, 16, 136, 240, 120, 272, 1232, 1680, 720, 272, 3968, 12096, 13440, 5040, 7936, 56320, 129024, 120960, 40320, 7936, 176896, 814080, 1491840, 1209600, 362880, 353792, 3610112, 12207360, 18627840, 13305600, 3628800
Offset: 0
Examples
From _Peter Bala_, Sep 06 2016: (Start) Table begins 1 1 1 2 2 2 8 6 16 40 24 16 136 240 120 272 1232 1680 720 272 3968 12096 13440 5040 ... D(tan(x)) = 1 + tan(x)^2. D^2(tan(x)) = 2*tan(x) + 2*tan(x)^3. D^3(tan(x)) = 2 + 8*tan(x)^2 + 6*tan(x)^4. D^4(tan(x)) = 16*tan(x) + 40*tan(x)^3 + 24*tan(x)^5. (End)
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..990
- William Y. C. Chen and Amy M. Fu, The Dumont Ansatz for the Eulerian Polynomials, Peak Polynomials and Derivative Polynomials, arXiv:2204.01497 [math.CO], 2022.
- M.-P. Grosset and A. P. Veselov, Bernoulli numbers and solitons, arXiv:math/0503175 [math.GM], 2005.
- Gordon Haigh, A "natural" approach to Pick's theorem, Math. Gaz. 64 (1980), no. 429, 173-180.
- Donald E. Knuth and Thomas J. Buckholtz, Computation of tangent, Euler and Bernoulli numbers, Math. Comp. 21 1967 663-688.
- Shi-Mei Ma, Qi Fang, Toufik Mansour, and Yeong-Nan Yeh, Alternating Eulerian polynomials and left peak polynomials, arXiv:2104.09374, 2021
- R. Roy, The Discovery of the Series Formula for Pi by Leibniz, Gregory and Nilakantha, Mathematics Magazine Vol. 63, No. 5 (Dec., 1990), 291-306.
- M. S. Tokmachev, Correlations Between Elements and Sequences in a Numerical Prism, Bulletin of the South Ural State University, Ser. Mathematics. Mechanics. Physics, 2019, Vol. 11, No. 1, 24-33.
Crossrefs
Programs
-
Mathematica
row[n_] := CoefficientList[ D[Tan[x], {x, n}] /. Tan -> Identity /. Sec -> Function[Sqrt[1 + #^2]], x] // DeleteCases[#, 0]&; Table[row[n], {n, 0, 10}] // Flatten // Prepend[#, 1] & (* Jean-François Alcover, Apr 05 2013 *) T[ n_, k_] := If[n<1, Boole[n==0 && k==1], (k-1)*T[n-1, k-1] + (k+1)*T[n-1, k+1]]; (* Michael Somos, Jul 08 2024 *)
-
PARI
{T(n, k) = if(n<1, n==0 && k==1, (k-1)*T(n-1, k-1) + (k+1)*T(n-1, k+1))}; /* Michael Somos, Jul 08 2024 */
Formula
T(0, k) = delta(1, k), T(n, k) = (k-1)*T(n-1, k-1) + (k+1)*T(n-1, k+1).
Comments