cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008304 Triangle read by rows: T(n,k) (n>=1; 1<=k<=n) is the number of permutations of [n] in which the longest increasing run has length k.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 16, 6, 1, 1, 69, 41, 8, 1, 1, 348, 293, 67, 10, 1, 1, 2016, 2309, 602, 99, 12, 1, 1, 13357, 19975, 5811, 1024, 137, 14, 1, 1, 99376, 189524, 60875, 11304, 1602, 181, 16, 1, 1, 822040, 1960041, 690729, 133669, 19710, 2360, 231, 18, 1, 1, 7477161
Offset: 1

Views

Author

Keywords

Comments

Row n has n terms.

Examples

			Triangle T(n,k) begins:
  1;
  1,   1;
  1,   4,   1;
  1,  16,   6,  1;
  1,  69,  41,  8,  1;
  1, 348, 293, 67, 10,  1;
  ...
T(3,2) = 4 because we have (13)2, 2(13), (23)1, 3(12), where the parentheses surround runs of length 2.
		

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 261, Table 7.4.1.

Crossrefs

Row sums give A000142. Sum_{k=1..n} k*T(n,k) = A064314(n). Cf. A064315.

Programs

  • Maple
    b:= proc(u, o, t, k) option remember; `if`(t=k, (u+o)!,
          `if`(max(t, u)+o b(0, n, 0, k) -b(0, n, 0, k+1):
    seq(seq(T(n,k), k=1..n), n=1..15);  # Alois P. Heinz, Oct 16 2013
  • Mathematica
    b[u_, o_, t_, k_] := b[u, o, t, k] = If[t == k, (u + o)!, If[Max[t, u]+o < k, 0, Sum[b[u+j-1, o-j, t+1, k], {j, 1, o}] + Sum[b[u-j, o+j-1, 1, k], {j, 1, u}]]]; T[n_, k_] := b[0, n, 0, k] - b[0, n, 0, k+1]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 15}] // Flatten (* Jean-François Alcover, Jan 10 2014, translated from Alois P. Heinz's Maple code *)
    (*additional code*)
    nn=12;a[r_]:=Apply[Plus,Table[Normal[Series[y x^(r+1)/(1-Sum[y x^i,{i,1,r}]),{x,0,nn}]][[n]]/(n+r)!,{n,1,nn-r}]]/.y->-1;Map[Select[#,#>0&]&,Transpose[Prepend[Table[Drop[Range[0,nn]! CoefficientList[Series[1/(1-x-a[n+1])-1/(1-x-a[n]),{x,0,nn}],x],1],{n,1,8}],Table[1,{nn}]]]]//Grid (* Geoffrey Critzer, Feb 25 2014 *)

Formula

E.g.f. of column k: 1/Sum_{n>=0} ((k+1)*n+1-x)*x^((k+1)*n)/((k+1)*n+1)! - 1/Sum_{n>=0} (k*n+1-x)*x^(k*n)/(k*n+1)!. - Alois P. Heinz, Oct 13 2013
T(n,k) = A122843(n,k) for k > n/2. - Alois P. Heinz, Oct 17 2013

Extensions

More terms from David W. Wilson, Sep 07 2001
Better description from Emeric Deutsch, May 08 2004