A008309 Triangle T(n,k) of arctangent numbers: expansion of arctan(x)^n/n!.
1, 1, -2, 1, -8, 1, 24, -20, 1, 184, -40, 1, -720, 784, -70, 1, -8448, 2464, -112, 1, 40320, -52352, 6384, -168, 1, 648576, -229760, 14448, -240, 1, -3628800, 5360256, -804320, 29568, -330, 1
Offset: 1
Examples
With the zero coefficients included the data begins 1; 0,1; -2,0,1; 0,-8,0,1; 24,0,-20,0,1; 0,184,0,-40,0,1; ..., which is A049218. The table without zeros begins 1; 1; -2, 1; -8, 1; 24, -20, 1; 184, -40, 1; ...
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 260.
Crossrefs
Programs
-
Mathematica
t[n_, k_] := (-1)^((3*n+k)/2)*n!/2^k*Sum[2^i*Binomial[n-1, i-1]*StirlingS1[i, k]/i!, {i, k, n}]; Flatten[Table[t[n,k], {n,1,11}, {k, 2-Mod[n, 2], n, 2}]] (* Jean-François Alcover, Aug 31 2011, after Vladimir Kruchinin *)
-
PARI
a(n)=atan(x)^n/n! T(n,k)=polcoeff(serlaplace(a(2*k-n%2)), n)
Formula
E.g.f.: arctan(x)^k/k! = Sum_{n>=0} T(m, floor((k+1)/2))* x^m/m!, where m = 2*n + k mod 2.
Extensions
Additional comments from Michael Somos