cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008310 Triangle of coefficients of Chebyshev polynomials T_n(x).

Original entry on oeis.org

1, 1, -1, 2, -3, 4, 1, -8, 8, 5, -20, 16, -1, 18, -48, 32, -7, 56, -112, 64, 1, -32, 160, -256, 128, 9, -120, 432, -576, 256, -1, 50, -400, 1120, -1280, 512, -11, 220, -1232, 2816, -2816, 1024, 1, -72, 840, -3584, 6912, -6144, 2048, 13, -364, 2912, -9984, 16640, -13312, 4096
Offset: 0

Views

Author

Keywords

Comments

The row length sequence of this irregular array is A008619(n), n >= 0. Even or odd powers appear in increasing order starting with 1 or x for even or odd row numbers n, respectively. This is the standard triangle A053120 with 0 deleted. - Wolfdieter Lang, Aug 02 2014
Let T* denote the triangle obtained by replacing each number in this triangle by its absolute value. Then T* gives the coefficients for cos(nx) as a polynomial in cos x. - Clark Kimberling, Aug 04 2024

Examples

			Rows are: (1), (1), (-1,2), (-3,4), (1,-8,8), (5,-20,16) etc., since if c = cos(x): cos(0x) = 1, cos(1x) = 1c; cos(2x) = -1+2c^2; cos(3x) = -3c+4c^3, cos(4x) = 1-8c^2+8c^4, cos(5x) = 5c-20c^3+16c^5, etc.
From _Wolfdieter Lang_, Aug 02 2014: (Start)
This irregular triangle a(n,k) begins:
  n\k   0    1     2      3      4      5      6      7 ...
  0:    1
  1:    1
  2:   -1    2
  3:   -3    4
  4:    1   -8     8
  5:    5  -20    16
  6:   -1   18   -48     32
  7:   -7   56  -112     64
  8:    1  -32   160   -256    128
  9:    9 -120   432   -576    256
 10:   -1   50  -400   1120  -1280    512
 11:  -11  220 -1232   2816  -2816   1024
 12:    1  -72   840  -3584   6912  -6144   2048
 13:   13 -364  2912  -9984  16640 -13312   4096
 14:   -1   98 -1568   9408 -26880  39424 -28672   8192
 15:  -15  560 -6048  28800 -70400  92160 -61440  16384
  ...
T(4,x) = 1 - 8*x^2 + 8*x^4, T(5,x) = 5*x - 20*x^3 +16*x^5.
(End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
  • E. A. Guilleman, Synthesis of Passive Networks, Wiley, 1957, p. 593.
  • Yaroslav Zolotaryuk, J. Chris Eilbeck, "Analytical approach to the Davydov-Scott theory with on-site potential", Physical Review B 63, p543402, Jan. 2001. The authors write, "Since the algebra of these is 'hyperbolic', contrary to the usual Chebyshev polynomials defined on the interval 0 <= x <= 1, we call the set of functions (21) the hyperbolic Chebyshev polynomials." (This refers to the triangle T* described in Comments.)

Crossrefs

A039991 is a row reversed version, but has zeros which enable the triangle to be seen. Columns/diagonals are A011782, A001792, A001793, A001794, A006974, A006975, A006976 etc.
Reflection of A028297. Cf. A008312, A053112.
Row sums are one. Polynomial evaluations include A001075 (x=2), A001541 (x=3), A001091, A001079, A023038, A011943, A001081, A023039, A001085, A077422, A077424, A097308, A097310, A068203.
Cf. A053120.

Programs

  • Maple
    A008310 := proc(n,m) local x ; coeftayl(simplify(ChebyshevT(n,x),'ChebyshevT'),x=0,m) ; end: i := 0 : for n from 0 to 100 do for m from n mod 2 to n by 2 do printf("%d %d ",i,A008310(n,m)) ; i := i+1 ; od ; od ; # R. J. Mathar, Apr 20 2007
    # second Maple program:
    b:= proc(n) b(n):= `if`(n<2, 1, expand(2*b(n-1)-x*b(n-2))) end:
    T:= n-> (p-> (d-> seq(coeff(p, x, d-i), i=0..d))(degree(p)))(b(n)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Sep 04 2019
  • Mathematica
    Flatten[{1, Table[CoefficientList[ChebyshevT[n, x], x], {n, 1, 13}]}]//DeleteCases[#, 0, Infinity]& (* or *) Flatten[{1, Table[Table[((-1)^k*2^(n-2 k-1)*n*Binomial[n-k, k])/(n-k), {k, Floor[n/2], 0, -1}], {n, 1, 13}]}] (* Eugeniy Sokol, Sep 04 2019 *)

Formula

a(n,m) = 2^(m-1) * n * (-1)^((n-m)/2) * ((n+m)/2-1)! / (((n-m)/2)! * m!) if n>0. - R. J. Mathar, Apr 20 2007
From Paul Weisenhorn, Oct 02 2019: (Start)
T_n(x) = 2*x*T_(n-1)(x) - T_(n-2)(x), T_0(x) = 1, T_1(x) = x.
T_n(x) = ((x+sqrt(x^2-1))^n + (x-sqrt(x^2-1))^n)/2. (End)
From Peter Bala, Aug 15 2022: (Start)
T(n,x) = [z^n] ( z*x + sqrt(1 + z^2*(x^2 - 1)) )^n.
Sum_{k = 0..2*n} binomial(2*n,k)*T(k,x) = (2^n)*(1 + x)^n*T(n,x).
exp( Sum_{n >= 1} T(n,x)*t^n/n ) = Sum_{n >= 0} P(n,x)*t^n, where P(n,x) denotes the n-th Legendre polynomial. (End)

Extensions

Additional comments and more terms from Henry Bottomley, Dec 13 2000
Edited: Corrected Cf. A039991 statement. Cf. A053120 added. - Wolfdieter Lang, Aug 06 2014