cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008340 Coordination sequence for E_8 lattice.

Original entry on oeis.org

1, 240, 9120, 121680, 864960, 4113840, 14905440, 44480400, 114879360, 265422960, 561403680, 1105317840, 2050966080, 3620750640, 6126497760, 9994133520, 15792541440, 24266930160, 36377039520, 53340513360, 76681767360
Offset: 0

Views

Author

Keywords

References

  • M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908.

Crossrefs

Programs

  • Maple
    if n = 0 then 1 else 456/7*n^7-120*n^6+312*n^5-120*n^4-48*n^3+240*n^2-624/7*n;
  • Mathematica
    Join[{1},Table[456/7*n^7-120*n^6+312*n^5-120*n^4-48*n^3+ 240*n^2- 624/7*n,{n,20}]] (* Harvey P. Dale, Jul 14 2014 *)

Formula

a(n) = if n = 0 then 1 else (456/7)*n^7-120*n^6+312*n^5-120*n^4-48*n^3+240*n^2-(624/7)*n.
Bacher et al. give a g.f.
G.f.: (x^8 +232*x^7 +24508*x^6 +107224*x^5 +133510*x^4 +55384*x^3 +7228*x^2 +232*x +1)/(x -1)^8 = 1 + 240*x* (1+30*x+231*x^2+556*x^3+447*x^4+102*x^5+x^6) /(1-x)^8. [Colin Barker, Sep 26 2012]

Extensions

The values given by O'Keeffe are incorrect.