A008345 a(n+1) = a(n)-b(n+1) if a(n) >= b(n+1) else a(n)+b(n+1), where {b(n)} are the triangular numbers A000217.
0, 1, 4, 10, 0, 15, 36, 8, 44, 89, 34, 100, 22, 113, 8, 128, 264, 111, 282, 92, 302, 71, 324, 48, 348, 23, 374, 752, 346, 781, 316, 812, 284, 845, 250, 880, 214, 917, 176, 956, 136, 997, 94, 1040, 50, 1085, 4, 1132, 2308, 1083, 2358, 1032, 2410, 979, 2464, 924
Offset: 0
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..25000 (first 1001 terms from Franklin T. Adams-Watters)
Programs
-
Maple
A008345 := proc(n) option remember; if n = 1 then n-1 elif A008345(n-1) >= n*(n+1)/2 then A008345(n-1)-n*(n+1)/2 else A008345(n-1)+n*(n+1)/2; fi; end;
-
Mathematica
nxt[{n_,a_}]:=Module[{tr=((n+1)(n+2))/2},{n+1,If[a>=tr,a-tr,a+tr]}]; Transpose[NestList[nxt,{0,0},50]][[2]] (* Harvey P. Dale, Jun 19 2013 *)
Comments