cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008385 Coordination sequence for A_5 lattice.

Original entry on oeis.org

1, 30, 240, 1010, 2970, 7002, 14240, 26070, 44130, 70310, 106752, 155850, 220250, 302850, 406800, 535502, 692610, 882030, 1107920, 1374690, 1687002, 2049770, 2468160, 2947590, 3493730, 4112502, 4810080, 5592890, 6467610, 7441170, 8520752
Offset: 0

Views

Author

Keywords

Programs

  • Magma
    [n eq 0 select 1 else (21*n^4 +35*n^2 +4)/2: n in [0..50]]; // G. C. Greubel, May 26 2023
    
  • Maple
    1, seq((21*n^4 +35*n^2 +4)/2, n=1..50);
  • Mathematica
    Table[n^2*(21*n^2 +35)/2 +2 -Boole[n==0], {n,0,50}] (* G. C. Greubel, May 26 2023 *)
  • Maxima
    A008385[n]:=21/2*n^4+35/2*n^2+2$
    makelist(A008385[n],n,0,30); /* Martin Ettl, Oct 26 2012 */
    
  • SageMath
    [n^2*(21*n^2 +35)/2 +2 -int(n==0) for n in range(51)] # G. C. Greubel, May 26 2023

Formula

a(n) = (21*n^4 + 35*n^2 + 4)/2, a(0) = 1.
G.f.: (1+x)*(1+24*x+76*x^2+24*x^3+x^4)/(1-x)^5. - Colin Barker, Apr 13 2012
E.g.f.: (1/2)*(-2 + (4 + 56*x + 182*x^2 + 126*x^3 + 21*x^4)*exp(x)). - G. C. Greubel, May 26 2023