cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008387 Coordination sequence for A_6 lattice.

Original entry on oeis.org

1, 42, 462, 2562, 9492, 27174, 65226, 137886, 264936, 472626, 794598, 1272810, 1958460, 2912910, 4208610, 5930022, 8174544, 11053434, 14692734, 19234194, 24836196, 31674678, 39944058, 49858158, 61651128, 75578370, 91917462, 110969082
Offset: 0

Views

Author

Keywords

Crossrefs

Row 6 of A103881.

Programs

  • Magma
    [n eq 0 select 1 else 7*n*(11*n^4+35*n^2+14)/10: n in [0..50]]; // G. C. Greubel, May 26 2023
    
  • Maple
    1, seq(7*n*(11*n^4+35*n^2+14)/10, n=1..40);
  • Mathematica
    LinearRecurrence[{6,-15,20,-15,6,-1}, {1,42,462,2562,9492,27174,65226}, 30] (* Jean-François Alcover, Jan 07 2019 *)
  • SageMath
    [7*n*(11*n^4 +35*n^2 +14)/10 +int(n==0) for n in range(51)] # G. C. Greubel, May 26 2023

Formula

a(n) = S(n,6) = 7*n*(11*n^4 + 35*n^2 + 14)/10, with S(n,m) = Sum_{k=0..m} binomial(m,k)^2 * binomial(n-k+m-1, m-1), for n > 0, and a(0) = 1.
G.f.: (1+36*x+225*x^2+400*x^3+225*x^4+36*x^5+x^6)/(1-x)^6 = 1 + 42*x*(1+5*x+10*x^2+5*x^3+x^4)/(1-x)^6. - Colin Barker, Sep 26 2012
E.g.f.: 1 + (1/10)*x*(420 + 1890*x + 2170*x^2 + 770*x^3 + 77*x^4)*exp(x). - G. C. Greubel, May 26 2023