cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A108094 Coefficients of series whose 16th power is the theta series of the 16-dimensional Barnes-Wall lattice (see A008409).

Original entry on oeis.org

1, 0, 270, 3840, -514080, -15413760, 1283087040, 62644907520, -3378279124350, -252933976704000, 8502815843769600, 1007506223570707200, -17757117956815481280, -3942183666885514421760, 14527133705347401150720, 15088544258811557869278720, 144818514010649047069497600
Offset: 0

Views

Author

N. J. A. Sloane and Michael Somos, Jun 06 2005

Keywords

Examples

			More precisely, the theta series of the Barnes-Wall lattice begins 1 + 4320*q^2 + 61440*q^3 + 522720*q^4 + 2211840*q^5 + 8960640*q^6 + 23224320*q^7 + ... and the 16th root of this is 1 + 270*q^2 + 3840*q^3 - 514080*q^4 - 15413760*q^5 + 1283087040*q^6 + 62644907520*q^7 - ...
		

Programs

  • Mathematica
    f[q_] := 1/2 (EllipticTheta[2, 0, q]^16 + EllipticTheta[3, 0, q]^16 + EllipticTheta[4, 0, q]^16 + 30 EllipticTheta[2, 0, q]^8 EllipticTheta[3, 0, q]^8);
    CoefficientList[f[q]^(1/16) + O[q]^17, q] (* Jean-François Alcover, Aug 17 2018 *)

A320729 Inverse Euler transform of A008409.

Original entry on oeis.org

0, 4320, 61440, -8810640, -263208960, 22737197280, 1104970014720, -61319781714960, -4559126871265280, 157589681950830816, 18460588655551795200, -337394373951169867920, -73200715363477357608960, 306095068890572836888800, 283363485933298319434493952, 2600519516007145850005282800
Offset: 1

Views

Author

Seiichi Manyama, Oct 20 2018

Keywords

Comments

a(n) is a multiple of 16.

Examples

			1 + 4320*q^2 + 61440*q^3 + 522720*q^4 + ... = (1-q^2)^(-4320) * (1-q^3)^(-61440) * (1-q^4)^8810640 * ... .
		

Crossrefs

A008774 Theta series of (probably nonexistent) exceptionally good 16-dimensional sphere packing.

Original entry on oeis.org

1, 0, 0, 7680, 4320, 276480, 61440, 2903040, 522720, 16896000, 2211840, 68774400, 8960640, 221460480, 23224320, 603325440, 67154400, 1448202240, 135168000, 3154982400, 319809600, 6359654400, 550195200, 12016788480, 1147643520
Offset: 0

Views

Author

Keywords

Examples

			1 + 7680*q^3 + 4320*q^4 + 276480*q^5 + 61440*q^6 + 2903040*q^7 + ...
		

Crossrefs

A008409(n) = a(2*n). 7680 * A135828(n) = a(2*n+3).

Programs

  • Mathematica
    QP = QPochhammer; a[n_] := Module[{A, A1, A2, A4}, A = x*O[x]^n; A1 = QP[x+ A]^8; A2 = QP[x^2+A]^8; A4 = QP[x^4+A]^8; SeriesCoefficient[(A1*(A2^6 + x^2*32*A2^3*A4^3 + x^4*4096*A4^6) + x^3*3840*A4^4*(A1^2*A4 + A2^3)) / (A1*A2^2*A4^2), n]]; a[0] = 1; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 30 2015, adapted from PARI *)
  • PARI
    {a(n) = local(A, A1, A2, A4); if( n<0, 0, A = x * O(x^n); A1 = eta(x + A)^8; A2 = eta(x^2 + A)^8; A4 = eta(x^4 + A)^8; polcoeff( ( A1 * (A2^6 + x^2 * 32 * A2^3 * A4^3 + x^4 * 4096 * A4^6) + x^3 * 3840 * A4^4 * ( A1^2 * A4 + A2^3 ) ) / (A1 * A2^2 * A4^2 ), n))} /* Michael Somos, Nov 29 2007 */

Formula

Expansion of ( E_4(q) * 2 * (E_4(q^2) - E_4(q^4)) + E_4(q^2) * (32 * E_4(q^4) - 17 * E_4(q^2)) ) / 15 in powers of q. - Michael Somos, Nov 29 2007
Showing 1-3 of 3 results.