cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008414 Coordination sequence for 6-dimensional cubic lattice.

Original entry on oeis.org

1, 12, 72, 292, 912, 2364, 5336, 10836, 20256, 35436, 58728, 93060, 142000, 209820, 301560, 423092, 581184, 783564, 1038984, 1357284, 1749456, 2227708, 2805528, 3497748, 4320608, 5291820, 6430632, 7757892, 9296112, 11069532
Offset: 0

Views

Author

Keywords

Comments

If Y_i (i=1,2,3,4,5,6) are 2-blocks of a (n+6)-set X then a(n-5) is the number of 11-subsets of X intersecting each Y_i (i=1,2,3,4,5,6). - Milan Janjic, Oct 28 2007

Programs

  • Maple
    for n from 1 to 8 do eval(4*n*(2/15*n^4+4/3*n^2+23/15)) od;
  • Mathematica
    {1}~Join~Table[4 n (2/15 n^4 + 4/3 n^2 + 23/15), {n, 29}] (* or *)
    CoefficientList[Series[((1 + x)/(1 - x))^6, {x, 0, 29}], x] (* Michael De Vlieger, Oct 04 2016 *)
    LinearRecurrence[{6,-15,20,-15,6,-1},{1,12,72,292,912,2364,5336},30] (* Harvey P. Dale, Jul 01 2020 *)
  • PARI
    a(n)=if(n, 4*n*(2*n^4+20*n^2+23)/15, 1) \\ Charles R Greathouse IV, Oct 04 2016

Formula

G.f.: ((1+x)/(1-x))^6.
a(n) = 4*n*(2/15*n^4+4/3*n^2+23/15) for n > 0. - S. Bujnowski (slawb(AT)atr.bydgoszcz.pl), Nov 26 2002
n*a(n) = 12*a(n-1) + (n-2)*a(n-2) for n > 1. - Seiichi Manyama, Jun 06 2018