cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008434 Theta series of {D_6}^{+} lattice.

Original entry on oeis.org

1, 0, 0, 32, 60, 0, 0, 192, 252, 0, 0, 480, 544, 0, 0, 832, 1020, 0, 0, 1440, 1560, 0, 0, 2112, 2080, 0, 0, 2624, 3264, 0, 0, 3840, 4092, 0, 0, 4992, 4380, 0, 0, 5440, 6552, 0, 0, 7392, 8160, 0, 0, 8832, 8224
Offset: 0

Views

Author

Keywords

Comments

From Robert Coquereaux, Aug 05 2017: (Start)
Other avatars of {D_6}^{+} and its theta series:
The lattice L4 generated by cuts of the complete graph on a set of 4 vertices (rescaled by sqrt(2)).
The generalized laminated lattice Lambda_6[3] with minimal norm 3.
The first member (k=1) of the family of lattices of SU(3) hyper-roots associated with the fusion category A_k(SU(3)); simple objects of the latter are irreducible integrable representations of the affine Lie algebra of SU(3) at level k. This lattice has to be rescaled: q --> q^2 since its minimal norm is 6 whereas the minimal norm of {D_6}^{+} is 3.
The space of modular forms on Gamma_1(16) of weight 3, twisted by a Dirichlet character defined as the Kronecker character -4, has dimension 7 and basis b1,...b7, where bn has leading term q^(n-1).
The theta function of {D_6}^{+} is b1 + 32 b4 + 60 b5.
(End)

Examples

			G.f. = 1 + 32*q^3 + 60*q^4 + 192*q^7 + 252*q^8 + 480*q^11 + 544*q^12 + ... - _Michael Somos_, Sep 09 2018
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 120.

Crossrefs

Programs

  • Magma
    order:=50;  // Example
    H := DirichletGroup(16,CyclotomicField(EulerPhi(16)));
    chars := Elements(H); eps := chars[2];
    M := ModularForms([eps],3);
    Eltseq(PowerSeries(M![1,0,0,32,60,0,0],order)); // Robert Coquereaux, Aug 05 2017
    
  • Magma
    A := Basis( ModularForms( Gamma1(16), 3), 50); A[1] + 32*A[4] + 60*A[5] + 192*A[8] + 252*A[9] + 480*A[12] + 544*A[13] + 832*A[16] + 1020*A[17] + 1440*A[20] + 1560*A[21]; /* Michael Somos, Sep 09 2018 */
    
  • Mathematica
    order = 50; S = (1/2) Series[
       EllipticTheta[2, 0, q^2]^6 + EllipticTheta[3, 0, q^2]^6 +
        EllipticTheta[4, 0, q^2]^6, {q, 0, order}];
    CoefficientList[Simplify[Normal[S], Assumptions -> q > 0], q] (* Robert Coquereaux, Aug 05 2017 *)
    a[ n_] := With [{e1 = QPochhammer[ q^2]^12, e2 = QPochhammer[ q^4]^6, e3 = QPochhammer[ q^8]^12}, SeriesCoefficient[ (e2^6 + e1 e3 (e1 + 64 q^3 e3)) / (2 e1 e2 e3), {q, 0, n}]]; (* Michael Somos, Sep 09 2018 *)
  • PARI
    {a(n) = my(A, e1, e2, e3); if( n<0, 0, A = x * O(x^n); e1 = eta(x^2)^12; e2 = eta(x^4 + A)^6; e3 = eta(x^8 + A)^12; polcoeff( (e2^6 + e1*e3*(e1 + 64 * x^3 * e3)) / (2 * e1 * e2 * e3), n))}; /* Michael Somos, Sep 09 2018 */

Formula

Expansion of (theta_2(q)^6 + theta_3(q)^6 + theta_4(q)^6)/2. - Seiichi Manyama, Oct 21 2018