A008462 Take sum of squares of digits of previous term; start with 8.
8, 64, 52, 29, 85, 89, 145, 42, 20, 4, 16, 37, 58, 89, 145, 42, 20, 4, 16, 37, 58, 89, 145, 42, 20, 4, 16, 37, 58, 89, 145, 42, 20, 4, 16, 37, 58, 89, 145, 42, 20, 4, 16, 37, 58, 89, 145, 42, 20, 4, 16, 37, 58, 89, 145, 42, 20, 4, 16, 37, 58, 89, 145, 42, 20, 4, 16, 37, 58, 89, 145
Offset: 1
References
- R. Honsberger, Ingenuity in Math., Random House, 1970, p. 83.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..100
- Arthur Porges, A set of eight numbers, Amer. Math. Monthly 52 (1945), 379-382.
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 1).
Crossrefs
Cf. A003132 (the iterated map), A003621, A039943, A099645, A031176, A007770, A000216 (starting with 2), A000218 (starting with 3), A080709 (starting with 4), A000221 (starting with 5), A008460 (starting with 6), A008463 (starting with 9), A139566 (starting with 15), A122065 (starting with 74169). - M. F. Hasler, May 24 2009
Programs
-
Magma
[8, 64, 52, 29, 85] cat &cat[[89, 145, 42, 20, 4, 16, 37, 58]: n in [0..17]]; // Vincenzo Librandi, Jan 29 2013
-
Mathematica
NestList[Total[IntegerDigits[#]^2]&, 8, 80] (* Vincenzo Librandi, Jan 29 2013 *) PadRight[{8,64,52,29,85},80,{20,4,16,37,58,89,145,42}] (* Harvey P. Dale, Dec 27 2019 *)
-
PARI
A008462(n)=[8, 64, 52, 29, 85, 89, 145, 42, 20, 4, 16, 37, 58][if(n>13,(n-6)%8+6,n)] \\ M. F. Hasler, May 24 2009
-
PARI
Vec(x*(8 + 64*x + 52*x^2 + 29*x^3 + 85*x^4 + 89*x^5 + 145*x^6 + 42*x^7 + 12*x^8 - 60*x^9 - 36*x^10 + 8*x^11 - 27*x^12) / ((1 - x)*(1 + x)*(1 + x^2)*(1 + x^4)) + O(x^60)) \\ Colin Barker, Apr 28 2018
Formula
Periodic with period 8.
a(n) = A080709(n-1) for n >= 5 and a(n) = A000221(n-1) = A008460(n+4) for all n >= 4. - M. F. Hasler, May 24 2009; edited and extended Apr 27 2018
From Colin Barker, Apr 28 2018: (Start)
G.f.: x*(8 + 64*x + 52*x^2 + 29*x^3 + 85*x^4 + 89*x^5 + 145*x^6 + 42*x^7 + 12*x^8 - 60*x^9 - 36*x^10 + 8*x^11 - 27*x^12) / ((1 - x)*(1 + x)*(1 + x^2)*(1 + x^4)).
a(n) = a(n-8) for n>13.
(End)