cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008488 Expansion of (1-x^6) / (1-x)^6.

Original entry on oeis.org

1, 6, 21, 56, 126, 252, 461, 786, 1266, 1946, 2877, 4116, 5726, 7776, 10341, 13502, 17346, 21966, 27461, 33936, 41502, 50276, 60381, 71946, 85106, 100002, 116781, 135596, 156606, 179976, 205877, 234486, 265986, 300566, 338421, 379752, 424766, 473676, 526701
Offset: 0

Views

Author

Keywords

Comments

Growth series of the affine Weyl group of type A5. - Paul E. Gunnells, Dec 27 2016

References

  • R. Bott, The geometry and the representation theory of compact Lie groups, in: Representation Theory of Lie Groups, in: London Math. Soc. Lecture Note Ser., vol. 34, Cambridge University Press, Cambridge, 1979, pp. 65-90.

Programs

  • GAP
    Concatenation([1], List([1..50], n-> (n^4+15*n^2+8)/4 )); # G. C. Greubel, Nov 07 2019
  • Magma
    [1] cat [(n^4+15*n^2+8)/4: n in [1..50]]; // G. C. Greubel, Nov 07 2019
    
  • Maple
    1, seq((n^4+15*n^2+8)/4, n=1..50); # G. C. Greubel, Nov 07 2019
  • Mathematica
    CoefficientList[Series[(1-x^6)/(1-x)^6,{x,0,30}],x] (* Harvey P. Dale, Sep 16 2016 *)
  • PARI
    Vec((1-x^6) / (1-x)^6 + O(x^50)) \\ Charles R Greathouse IV, Sep 26 2012, corrected by Colin Barker, Jan 06 2017
    
  • Sage
    [1]+[(n^4+15*n^2+8)/4 for n in (1..50)] # G. C. Greubel, Nov 07 2019
    

Formula

Equals binomial transform of [1, 5, 10, 10, 5, 1, -1, 1, -1, 1, ...]. - Gary W. Adamson, May 12 2008
a(n) = (n^4 + 15*n^2 + 8)/4 for n > 0. - R. J. Mathar, Jan 27 2009
E.g.f.: -1 + (8 + 16*x + 22*x^2 + 6*x^3 + x^4)*exp(x)/4. - G. C. Greubel, Nov 07 2019