cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008493 Expansion of (1-x^11) / (1-x)^11.

Original entry on oeis.org

1, 11, 66, 286, 1001, 3003, 8008, 19448, 43758, 92378, 184756, 352715, 646635, 1144000, 1960970, 3267759, 5308732, 8428277, 13103662, 19986252, 29952637, 44167409, 64159524, 91914394, 129984074, 181618140, 250918096, 343018401, 464297471, 622622286
Offset: 0

Views

Author

Keywords

Comments

Coordination sequence for 10-dimensional cyclotomic lattice Z[zeta_11].
Growth series of the affine Weyl group of type A10. - Paul E. Gunnells, Jan 06 2017

References

  • R. Bott, The geometry and the representation theory of compact Lie groups, in: Representation Theory of Lie Groups, in: London Math. Soc. Lecture Note Ser., vol. 34, Cambridge University Press, Cambridge, 1979, pp. 65-90.

Crossrefs

Cf. A001287.

Programs

  • GAP
    Concatenation([1], List([1..40], n-> 11*n*(193248+152900*n^2 +16401*n^4 +330*n^6+n^8)/362880 )); # G. C. Greubel, Nov 07 2019
  • Magma
    [1] cat [11*n*(193248+152900*n^2+16401*n^4+330*n^6+n^8)/362880: n in [1..40]]; // G. C. Greubel, Nov 07 2019
    
  • Maple
    1, seq(11*n*(193248+152900*n^2+16401*n^4+330*n^6+n^8)/362880, n=1..40); # G. C. Greubel, Nov 07 2019
  • Mathematica
    CoefficientList[(1-x^11)/(1-x)^11 + O[x]^30, x] (* Jean-François Alcover, Jan 09 2019 *)
    Table[If[n==0,1, 11*n*(193248+152900*n^2+16401*n^4+330*n^6+n^8)/362880], {n,0,40}] (* G. C. Greubel, Nov 07 2019 *)
  • PARI
    Vec((1-x^11)/(1-x)^11 + O(x^40)) \\ Colin Barker, Jan 06 2017
    
  • Sage
    [1]+[11*n*(193248+152900*n^2+16401*n^4+330*n^6+n^8)/362880 for n in (1..40)] # G. C. Greubel, Nov 07 2019
    

Formula

a(n) = A001287(n+10) - A001287(n-1). - R. J. Mathar, Aug 10 2013
a(n) = 11*n*(193248 + 152900*n^2 + 16401*n^4 + 330*n^6 + n^8)/362880 for n>0. - Colin Barker, Jan 06 2017
E.g.f.: 1 + x*(3991680 + 7983360*x + 7318080*x^2 + 3160080*x^3 + 765072*x^4 + 105336*x^5 + 8712*x^6 + 396*x^7 + 11*x^8)*exp(x)/362880. - G. C. Greubel, Nov 07 2019
a(n) = 10*a(n-1)-45*a(n-2)+120*a(n-3)-210*a(n-4)+252*a(n-5)-210*a(n-6)+120*a(n-7)-45*a(n-8)+10*a(n-9)-a(n-10). - Wesley Ivan Hurt, Jun 07 2021