cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008494 Expansion of (1-x^12) / (1-x)^12.

Original entry on oeis.org

1, 12, 78, 364, 1365, 4368, 12376, 31824, 75582, 167960, 352716, 705432, 1352077, 2496132, 4457322, 7725796, 13036530, 21469812, 34584914, 54595476, 84596733, 128856520, 193184004, 285392328, 415873822, 598309152, 850534752, 1195596128, 1663018149
Offset: 0

Views

Author

Keywords

Programs

  • GAP
    Concatenation([1], List([1..40], n-> (604800 + 2286636*n^2 + 696905*n^4 + 39963*n^6 + 495*n^8 + n^10)/302400 )); # G. C. Greubel, Nov 07 2019
  • Magma
    [1] cat [(604800 + 2286636*n^2 + 696905*n^4 + 39963*n^6 + 495*n^8 + n^10)/302400: n in [1..40]]; // G. C. Greubel, Nov 07 2019
    
  • Maple
    1, seq((604800 + 2286636*n^2 + 696905*n^4 + 39963*n^6 + 495*n^8 + n^10)/302400, n=1..40); # G. C. Greubel, Nov 07 2019
  • Mathematica
    Table[If[n==0,1,(604800 + 2286636*n^2 + 696905*n^4 + 39963*n^6 + 495*n^8 + n^10)/302400], {n,0,40}] (* G. C. Greubel, Nov 07 2019 *)
  • PARI
    Vec((1 + x)*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)*(1 - x^2 + x^4) / (1 - x)^11 + O(x^30)) \\ Colin Barker, Jan 06 2017
    
  • Sage
    [1]+[(604800 + 2286636*n^2 + 696905*n^4 + 39963*n^6 + 495*n^8 + n^10)/302400 for n in (1..40)] # G. C. Greubel, Nov 07 2019
    

Formula

From Colin Barker, Jan 06 2017: (Start)
a(n) = (604800 + 2286636*n^2 + 696905*n^4 + 39963*n^6 + 495*n^8 + n^10) / 302400 for n>0.
G.f.: (1 + x)*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)*(1 - x^2 + x^4) / (1 - x)^11.
(End)
E.g.f.: -1 + (604800 +3024000*x +8467200*x^2 +8265600*x^3 +4170600*x^4 + 1161720*x^5 +194460*x^6 +19740*x^7 +1245*x^8 +45*x^9 +x^10)* exp(x) / 302400. - G. C. Greubel, Nov 07 2019