A008500 6-dimensional centered tetrahedral numbers.
1, 8, 36, 120, 330, 792, 1716, 3431, 6427, 11404, 19328, 31494, 49596, 75804, 112848, 164109, 233717, 326656, 448876, 607412, 810510, 1067760, 1390236, 1790643, 2283471, 2885156, 3614248, 4491586, 5540480, 6786900, 8259672
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 227.
- Milan Janjic, Two Enumerative Functions
- Index entries for two-way infinite sequences
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Crossrefs
Partial sums of A008489.
Programs
-
GAP
B:=Binomial;; List([0..30], n-> B(n+7,7)-B(n,7) ); # G. C. Greubel, Nov 09 2019
-
Magma
[(720 + 1764*n +735*n^3 +2128*n^2 +385*n^4 +21*n^5 + 7*n^6)/720: n in [0..30]]; // Vincenzo Librandi, Oct 08 2011
-
Maple
seq(binomial(n+7,7) - binomial(n,7), n=0..30); # G. C. Greubel, Nov 09 2019
-
Mathematica
Table[Binomial[n+7,7] - Binomial[n,7], {n,0,30}] (* G. C. Greubel, Nov 09 2019 *)
-
PARI
a(n)=binomial(n+7,7)-binomial(n,7)
-
Sage
b=binomial; [b(n+7,7) - b(n,7) for n in (0..30)] # G. C. Greubel, Nov 09 2019
Formula
G.f.: (1-x^7)/(1-x)^8 = (1 + x + x^2 + x^3 + x^4 + x^5 + x^6 )/(1-x)^7.
a(-1-n) = a(n).
720*a(n) = 720 + 1764*n + 2128*n^2 + 735*n^3 + 385*n^4 + 21*n^5 + 7*n^6. - R. J. Mathar, Mar 14 2011
Comments