cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008529 Coordination sequence for 4-dimensional face-centered cubic orthogonal lattice.

Original entry on oeis.org

1, 14, 68, 202, 456, 870, 1484, 2338, 3472, 4926, 6740, 8954, 11608, 14742, 18396, 22610, 27424, 32878, 39012, 45866, 53480, 61894, 71148, 81282, 92336, 104350, 117364, 131418, 146552, 162806, 180220, 198834, 218688, 239822, 262276, 286090, 311304, 337958, 366092, 395746, 426960
Offset: 0

Views

Author

Keywords

References

  • M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908.

Programs

  • GAP
    Concatenation([1], List([1..45], n-> 2*n*(11 +10*n^2)/3 )); # G. C. Greubel, Nov 09 2019
  • Magma
    [1] cat [(20*n^3+22*n)/3: n in [1..45]]; // Vincenzo Librandi, Apr 16 2012
    
  • Maple
    1, seq( (20*k^3+22*k)/3, k=1..45);
  • Mathematica
    CoefficientList[Series[(1+x)^2*(1+8*x+x^2)/(1-x)^4,{x,0,45}],x] (* Vincenzo Librandi, Apr 16 2012 *)
    Table[If[n==0,1, 2*n*(11 +10*n^2)/3], {n,0,45}] (* or *) LinearRecurrence[{4,-6,4,-1}, {1,14,68,202,456}, 46] (* G. C. Greubel, Nov 09 2019 *)
  • PARI
    vector(46, n, if(n==1,1, 2*(n-1)*(11 +10*(n-1)^2)/3) ) \\ G. C. Greubel, Nov 09 2019
    
  • Sage
    [1]+[2*n*(11 +10*n^2)/3 for n in (1..45)]; # G. C. Greubel, Nov 09 2019
    

Formula

G.f.: (1+x)^2*(1+8*x+x^2)/(1-x)^4. - Colin Barker, Apr 14 2012
E.g.f.: 1 + (42 + 60*x^2 + 20*x^3)*exp(x)/3. - G. C. Greubel, Nov 09 2019