A008529 Coordination sequence for 4-dimensional face-centered cubic orthogonal lattice.
1, 14, 68, 202, 456, 870, 1484, 2338, 3472, 4926, 6740, 8954, 11608, 14742, 18396, 22610, 27424, 32878, 39012, 45866, 53480, 61894, 71148, 81282, 92336, 104350, 117364, 131418, 146552, 162806, 180220, 198834, 218688, 239822, 262276, 286090, 311304, 337958, 366092, 395746, 426960
Offset: 0
References
- M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908.
- M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908. [Annotated scanned copy]
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
GAP
Concatenation([1], List([1..45], n-> 2*n*(11 +10*n^2)/3 )); # G. C. Greubel, Nov 09 2019
-
Magma
[1] cat [(20*n^3+22*n)/3: n in [1..45]]; // Vincenzo Librandi, Apr 16 2012
-
Maple
1, seq( (20*k^3+22*k)/3, k=1..45);
-
Mathematica
CoefficientList[Series[(1+x)^2*(1+8*x+x^2)/(1-x)^4,{x,0,45}],x] (* Vincenzo Librandi, Apr 16 2012 *) Table[If[n==0,1, 2*n*(11 +10*n^2)/3], {n,0,45}] (* or *) LinearRecurrence[{4,-6,4,-1}, {1,14,68,202,456}, 46] (* G. C. Greubel, Nov 09 2019 *)
-
PARI
vector(46, n, if(n==1,1, 2*(n-1)*(11 +10*(n-1)^2)/3) ) \\ G. C. Greubel, Nov 09 2019
-
Sage
[1]+[2*n*(11 +10*n^2)/3 for n in (1..45)]; # G. C. Greubel, Nov 09 2019
Formula
G.f.: (1+x)^2*(1+8*x+x^2)/(1-x)^4. - Colin Barker, Apr 14 2012
E.g.f.: 1 + (42 + 60*x^2 + 20*x^3)*exp(x)/3. - G. C. Greubel, Nov 09 2019