cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008533 Coordination sequence for {A_5}* lattice.

Original entry on oeis.org

1, 12, 72, 272, 762, 1752, 3512, 6372, 10722, 17012, 25752, 37512, 52922, 72672, 97512, 128252, 165762, 210972, 264872, 328512, 403002, 489512, 589272, 703572, 833762, 981252, 1147512, 1334072, 1542522, 1774512, 2031752, 2316012, 2629122, 2972972, 3349512
Offset: 0

Views

Author

Keywords

Programs

  • GAP
    Concatenation([1], List([1..45], n-> (4+15*n^2+5*n^4)/2 )); # G. C. Greubel, Nov 10 2019
  • Magma
    [1] cat [(4+15*n^2+5*n^4)/2: n in [1..45]]; // G. C. Greubel, Nov 10 2019
    
  • Maple
    1, seq( (5*k^4+15*k^2+4)/2, k=1..40);
  • Mathematica
    Table[If[n==0, 1, (4+15*n^2+5*n^4)/2], {n,0,40}] (* G. C. Greubel, Nov 10 2019 *)
    LinearRecurrence[{5,-10,10,-5,1},{1,12,72,272,762,1752},50] (* Harvey P. Dale, Jan 08 2020 *)
  • PARI
    Vec(-(x+1)*(x^4+6*x^3+16*x^2+6*x+1) / (x-1)^5 + O(x^40)) \\ Colin Barker, Mar 03 2015
    
  • PARI
    vector(46, n, if(n==1,1, (4 +15*(n-1)^2 +5*(n-1)^4)/2 ) ) \\ G. C. Greubel, Nov 10 2019
    
  • Sage
    [1]+[(4+15*n^2+5*n^4)/2 for n in (1..45)]; # G. C. Greubel, Nov 10 2019
    

Formula

a(n) = 5*a(n-1) -10*a(n-2) +10*a(n-3) -5*a(n-4) +a(n-5) for n>5. - Colin Barker, Mar 03 2015
G.f.: (1+x)*(1+6*x+16*x^2+6*x^3+x^4)/(1-x)^5. - Colin Barker, Mar 03 2015
E.g.f.: -1 + (4 + 20*x + 50*x^2 + 30*x^3 + 5*x^4)*exp(x)/2. - G. C. Greubel, Nov 10 2019