cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008584 Molien series for Weyl group E_6.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 2, 1, 3, 2, 4, 3, 6, 4, 8, 6, 10, 9, 14, 11, 18, 15, 22, 20, 29, 25, 36, 32, 43, 41, 54, 49, 66, 61, 78, 75, 95, 89, 113, 107, 132, 129, 157, 150, 184, 178, 212, 209, 248, 241, 287, 280, 327
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 125.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups. Ergebnisse der Mathematik und Ihrer Grenzgebiete, New Series, no.14. Springer Verlag, 1957, Table 10.
  • L. Smith, Polynomial Invariants of Finite Groups, Peters, 1995, p. 199 (No. 35).

Crossrefs

Cf. A014977.

Programs

  • Magma
    MolienSeries(CoxeterGroup("E6")); // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
    
  • Maple
    seq(coeff(series(1/((1-x^2)*(1-x^5)*(1-x^6)*(1-x^8)*(1-x^9)*(1-x^12)), x, n+1), x, n), n = 0..60); # G. C. Greubel, Jan 31 2020
  • Mathematica
    CoefficientList[Series[1/((1-x^2)(1-x^5)(1-x^6)(1-x^8)(1-x^9)(1-x^12)),{x,0,55}],x] (* Harvey P. Dale, Aug 10 2011 *)
  • PARI
    my(x='x+O('x^60)); Vec(1/((1-x^2)*(1-x^5)*(1-x^6)*(1-x^8)*(1-x^9)*(1-x^12))) \\ G. C. Greubel, Jan 31 2020
    
  • Sage
    def A008584_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/((1-x^2)*(1-x^5)*(1-x^6)*(1-x^8)*(1-x^9)*(1-x^12)) ).list()
    A008584_list(60) # G. C. Greubel, Jan 31 2020

Formula

G.f.: 1/((1-x^2)*(1-x^5)*(1-x^6)*(1-x^8)*(1-x^9)*(1-x^12)).
a(n) ~ 1/6220800*n^5 + 1/414720*n^4. - Ralf Stephan, Apr 29 2014