cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008614 Molien series of 3-dimensional representation of group GL(3,2) (= L(2,7)); a simple group of order 168.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 2, 0, 3, 0, 3, 1, 3, 0, 4, 1, 4, 1, 5, 1, 5, 1, 6, 2, 6, 2, 7, 2, 7, 3, 8, 3, 9, 3, 9, 4, 10, 4, 11, 5, 11, 5, 12, 6, 13, 6, 14, 7, 14, 7, 16, 8, 16, 9, 17, 9, 18, 10, 19, 11, 20, 11, 21, 12, 22, 13, 23, 14, 24, 14, 25, 16, 26, 16, 28, 17, 28, 18, 30
Offset: 0

Views

Author

Keywords

Comments

The simple group of order 168 expressed as a group of linear substitutions on three variables has invariants of degrees 4, 6, 14 which are rationally independent. The invariant of degree 4 is x1*x2^3 + x2*x3^3 + x3*x1^3 (Klein's quartic curve). - Michael Somos, Mar 18 2015

Examples

			G.f. = 1 + x^4 + x^6 + x^8 + x^10 + 2*x^12 + 2*x^14 + 2*x^16 + 3*x^18 + ...
		

References

  • D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 101.
  • W. Burnside, Theory of Groups of Finite Order, Dover Publications, NY, 1955, section 267, page 363. There is a typo in his formula: the term with numerator 21 should have denominator (1+x)(1-x^2). [Added by N. J. A. Sloane, Mar 01 2012]
  • T. A. Springer, Invariant Theory, Lecture Notes in Math., Vol. 585, Springer, p. 97.

Crossrefs

Cf. A008671.

Programs

  • Maple
    (1+x^21)/(1-x^4)/(1-x^6)/(1-x^14);
  • Mathematica
    LinearRecurrence[{-1,0,1,2,1,0,0,0,0,-1,-2,-1,0,1,1},{1,0,0,0,1,0,1,0,1,0,1,0,2,0,2},100] (* Harvey P. Dale, Jan 17 2015 *)
    a[ n_] := Module[{m = If[ n < 0, -3 - n, n]}, m = If[ OddQ[m], m - 21, m] / 2; SeriesCoefficient[ 1 / ((1 - x^2) (1 - x^3) (1 - x^7)), {x, 0, m}]]; (* Michael Somos, Mar 18 2015 *)
  • PARI
    {a(n) = if( n%2, n-=21); n/=2; if( n<-11, n=-12-n); polcoeff( 1 / ((1-x^2) * (1-x^3) * (1-x^7)) + x * O(x^n), n)}; /* Michael Somos, Oct 11 2006 */

Formula

Euler transform of length 42 sequence [0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1]. - Michael Somos, Oct 11 2006
G.f.: (1 - x^42) / ((1 - x^4) * (1 - x^6) * (1 - x^14) * (1 - x^21)). - Michael Somos, Oct 11 2006
a(n) = a(-3 - n). a(n) = a(n-4) + a(n-6) - a(n-10) + a(n-14) - a(n-18) - a(n-20) + a(n-24) for all n in Z. - Michael Somos, Oct 11 2006
a(2*n + 21) = a(2*n) = A008671(n) for all n in Z.
a(n) ~ 1/336*n^2. - Ralf Stephan, Apr 29 2014
a(n)= -a(n-1) +a(n-3) +2*a(n-4) +a(n-5) -a(n-10) -2*a(n-11) -a(n-12) +a(n-14) +a(n-15). - R. J. Mathar, Dec 18 2014
G.f.: (1/168) * ( 1 / (1 - x)^3 + 21 / ((1 + x) * (1 - x^2)) + 56 / (1 - x^3) + 42 / ((1 - x) * (1 + x^2)) + 24 * (1 - x) * (2 + 3*x + 2*x^2) / (1 + x + x^2 + x^3 + x^4 + x^5 + x^6)). [Burnside] - Michael Somos, Mar 18 2015