A008627 Molien series for A_4.
1, 1, 2, 3, 5, 6, 10, 12, 17, 21, 28, 33, 43, 50, 62, 72, 87, 99, 118, 133, 155, 174, 200, 222, 253, 279, 314, 345, 385, 420, 466, 506, 557, 603, 660, 711, 775, 832, 902, 966, 1043, 1113, 1198, 1275, 1367, 1452, 1552, 1644, 1753, 1853, 1970, 2079, 2205, 2322
Offset: 0
References
- D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 105.
Links
- Index entries for Molien series
- Index entries for linear recurrences with constant coefficients, signature (1,2,-1,-2,-1,2,1,-1).
Programs
-
Maple
(1+x^6)/(1-x)/(1-x^2)/(1-x^3)/(1-x^4): seq(coeff(series(%,x,n+1),x,n), n=0..60);
-
Mathematica
nn=50;CoefficientList[Series[CycleIndex[AlternatingGroup[4],s]/.Table[s[i]->x^i/(1-x^i),{i,1,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Oct 16 2012 *)
-
Sage
ring = PowerSeriesRing(ZZ, 'x', default_prec=50) ms = AlternatingGroup(4).molien_series() list(ring(ms)) # Ralf Stephan, Apr 29 2014
Formula
a(n) ~ 1/72*n^3. - Ralf Stephan, Apr 29 2014
G.f.: ( 1-x^2+x^4 ) / ( (1+x+x^2)*(1+x)^2*(x-1)^4 ). - R. J. Mathar, Dec 18 2014
Comments