cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008627 Molien series for A_4.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 10, 12, 17, 21, 28, 33, 43, 50, 62, 72, 87, 99, 118, 133, 155, 174, 200, 222, 253, 279, 314, 345, 385, 420, 466, 506, 557, 603, 660, 711, 775, 832, 902, 966, 1043, 1113, 1198, 1275, 1367, 1452, 1552, 1644, 1753, 1853, 1970, 2079, 2205, 2322
Offset: 0

Views

Author

Keywords

Comments

With offset = 4: a(n) is the number of equivalence classes of compositions (summands >=1) of n into exactly 4 parts where two compositions a,b are considered equivalent if the summands of a can be permuted into the summands of b with an even number of transpositions. For example, let the class representatives be the last such composition in lexicographic order. a(10)=10 because we have the following nine partitions of 10 into 4 parts, {7,1,1,1}, {6,2,1,1}, {5,3,1,1}, {5,2,2,1}, {4,4,1,1}, {4,3,2,1}, {4,2,2,2},{3,3,3,1}, {3,3,2,2} and the class represented by {3,4,2,1}. - Geoffrey Critzer, Oct 16 2012

References

  • D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 105.

Programs

  • Maple
    (1+x^6)/(1-x)/(1-x^2)/(1-x^3)/(1-x^4): seq(coeff(series(%,x,n+1),x,n), n=0..60);
  • Mathematica
    nn=50;CoefficientList[Series[CycleIndex[AlternatingGroup[4],s]/.Table[s[i]->x^i/(1-x^i),{i,1,nn}],{x,0,nn}],x]  (* Geoffrey Critzer, Oct 16 2012 *)
  • Sage
    ring = PowerSeriesRing(ZZ, 'x', default_prec=50)
    ms = AlternatingGroup(4).molien_series()
    list(ring(ms))
    # Ralf Stephan, Apr 29 2014

Formula

a(n) ~ 1/72*n^3. - Ralf Stephan, Apr 29 2014
G.f.: ( 1-x^2+x^4 ) / ( (1+x+x^2)*(1+x)^2*(x-1)^4 ). - R. J. Mathar, Dec 18 2014