cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008632 Molien series for A_9.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 41, 54, 73, 94, 123, 157, 201, 252, 318, 393, 488, 598, 732, 887, 1076, 1291, 1549, 1845, 2194, 2592, 3060, 3589, 4206, 4904, 5708, 6615, 7658, 8825, 10158, 11651, 13343, 15231, 17365, 19735, 22402, 25361, 28670
Offset: 0

Views

Author

Keywords

References

  • D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 105.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1+x^36)/(&*[1-x^j: j in [1..9]]) )); // G. C. Greubel, Feb 02 2020
    
  • Maple
    seq(coeff(series( (1+x^36)/mul((1-x^j), j=1..9)), x, n+1), x, n), n = 0..50); # G. C. Greubel, Feb 02 2020
  • Mathematica
    CoefficientList[Series[(1+x^36)/Product[(1-x^j), {j,1,9}], {x,0,50}], x] (* G. C. Greubel, Feb 02 2020 *)
  • PARI
    Vec( (1+x^36)/prod(j=1,9, 1-x^j) +O('x^50) ) \\ G. C. Greubel, Feb 02 2020
    
  • Sage
    def A008631_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x^36)/product(1-x^j for j in (1..9)) ).list()
    A008631_list(70) # G. C. Greubel, Feb 02 2020

Formula

G.f.: (1+x^36)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^7)*(1-x^8)* (1-x^9)).

Extensions

More terms from Sean A. Irvine, Apr 01 2018