cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008638 Number of partitions of n into at most 9 parts.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 41, 54, 73, 94, 123, 157, 201, 252, 318, 393, 488, 598, 732, 887, 1076, 1291, 1549, 1845, 2194, 2592, 3060, 3589, 4206, 4904, 5708, 6615, 7657, 8824, 10156, 11648, 13338, 15224, 17354, 19720, 22380, 25331, 28629, 32278
Offset: 0

Views

Author

Keywords

Comments

For n > 8: also number of partitions of n into parts <= 9: a(n) = A026820(n, 9). - Reinhard Zumkeller, Jan 21 2010

References

  • A. Cayley, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 10, p. 415.
  • H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 2.

Crossrefs

Essentially same as A026815.
a(n) = A008284(n+9, 9), n >= 0.
Cf. A288344 (partial sums), A266777 (first differences).

Programs

  • Mathematica
    CoefficientList[ Series[ 1/ Product[ 1 - x^n, {n, 1, 9} ], {x, 0, 60} ], x ]

Formula

G.f.: 1/Product_{k=1..9} (1 - q^k).
a(n) = floor((30*n^8 + 5400*n^7 + 405300*n^6 + 16443000*n^5 + 390533640*n^4 + 5486840100*n^3 + 43691213950*n^2 + 175052776500*n + 256697834389)/438939648000 + (n + 1)*(2*n^2 + 133*n + 2597)*(-1)^n/147456 + (-1)^n*((n + 1)*(n + 47)*(-1)^floor(n/3 + 2/3) + (2*n^2 + 90*n + 127)*(-1)^floor(n/3 + 1/3) + (n + 2)*(n + 40)*(-1)^floor(n/3))/17496 + 1/256*((-1)^((2*n + (-1)^n - 1)/4)*floor((n + 2)/2)) + 1/2). - Tani Akinari, Oct 20 2012
a(n) = a(n-9) + A008637(n). - Vladimír Modrák, Sep 28 2020
From Vladimír Modrák, Aug 09 2022: (Start)
a(n) = Sum_{i_1=0..floor(n/3)} Sum_{i_2=0..floor(n/4)} Sum_{i_3=0..floor(n/5)} Sum_{i_4=0..floor(n/6)} Sum_{i_5=0..floor(n/7)} Sum_{i_6=0..floor(n/8)} Sum_{i_7=0..floor(n/9)} ceiling((max(0, n + 1 - 3*i_1 - 4*i_2 - 5*i_3 - 6*i_4 - 7*i_5 - 8*i_6 - 9*i_7))/2).
a(n) = Sum_{i_1=0..floor(n/4)} Sum_{i_2=0..floor(n/5)} Sum_{i_3=0..floor(n/6)} Sum_{i_4=0..floor(n/7)} Sum_{i_5=0..floor(n/8)} Sum_{i_6=0..floor(n/9)} floor(((max(0, n + 3 - 4*i_1 - 5*i_2 - 6*i_3 - 7*i_4 - 8*i_5 - 9*i_6))^2+4)/12). (End)