cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008640 Number of partitions of n into at most 11 parts.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 76, 99, 131, 169, 219, 278, 355, 445, 560, 695, 863, 1060, 1303, 1586, 1930, 2331, 2812, 3370, 4035, 4802, 5708, 6751, 7972, 9373, 11004, 12866, 15021, 17475, 20298, 23501, 27169, 31316, 36043, 41373, 47420, 54218, 61903, 70515, 80215, 91058, 103226, 116792, 131970, 148847
Offset: 0

Views

Author

Keywords

Comments

For n>10: also number of partitions of n into parts <= 11: a(n)=A026820(n,11). [Reinhard Zumkeller, Jan 21 2010]

References

  • A. Cayley, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 10, p. 415.
  • H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 2.

Crossrefs

Differs from A008634 at 55th term.
a(n) = A008284(n+11, 11), n >= 0.

Programs

  • Maple
    1/(1-x)/(1-x^2)/(1-x^3)/(1-x^4)/(1-x^5)/(1-x^6)/(1-x^7)/(1-x^8)/(1-x^9)/(1-x^10)/(1-x^11)
    with(combstruct):ZL12:=[S,{S=Set(Cycle(Z,card<12))},unlabeled]: seq(count(ZL12,size=n),n=0..44); # Zerinvary Lajos, Sep 24 2007
    B:=[S,{S = Set(Sequence(Z,1 <= card),card <=11)},unlabelled]: seq(combstruct[count](B, size=n), n=0..44); # Zerinvary Lajos, Mar 21 2009
  • Mathematica
    CoefficientList[ Series[ 1/ Product[ 1 - x^n, {n, 1, 11} ], {x, 0, 60} ], x ]

Formula

a(n) = a(n-1) + a(n-2) - a(n-5) - a(n-7) + a(n-14) + 2*a(n-15) + a(n-16) - a(n-19) - a(n-20) - a(n-21) - 2*a(n-22) - a(n-23) - a(n-24) - a(n-26) + 2*a(n-27) + 2*a(n-28) + 2*a(n-29) + 2*a(n-30) + a(n-31) + a(n-32) - a(n-34) - a(n-35) - 2*a(n-36) - 2*a(n-37) - 2*a(n-38) - 2*a(n-39) + a(n-40) + a(n-42) + a(n-43) + 2*a(n-44) + a(n-45) + a(n-46) + a(n-47) - a(n-50) - 2*a(n-51) - a(n-52) + a(n-59) + a(n-61) - a(n-64) - a(n-65) + a(n-66). - David Neil McGrath, Jul 27 2015
G.f.: 1 / prod(k=1..11, 1 - x^k ). - Joerg Arndt, Aug 04 2015