A008641 Number of partitions of n into at most 12 parts.
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 100, 133, 172, 224, 285, 366, 460, 582, 725, 905, 1116, 1380, 1686, 2063, 2503, 3036, 3655, 4401, 5262, 6290, 7476, 8877, 10489, 12384, 14552, 17084, 19978, 23334, 27156, 31570, 36578, 42333, 48849, 56297
Offset: 0
References
- A. Cayley, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 10, p. 415.
- H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 2.
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 361
- Index entries for linear recurrences with constant coefficients, signature (1, 1, 0, 0, -1, 0, -1, 0, 0, 0, 0, 1, -1, 0, 2, 1, 1, 0, 0, -1, -1, -2, -1, -1, 0, -2, 0, 1, 2, 2, 2, 2, 1, 1, 0, -1, -2, -1, -4, -1, -2, -1, 0, 1, 1, 2, 2, 2, 2, 1, 0, -2, 0, -1, -1, -2, -1, -1, 0, 0, 1, 1, 2, 0, -1, 1, 0, 0, 0, 0, -1, 0, -1, 0, 0, 1, 1, -1).
Crossrefs
Programs
-
Maple
1/(1-x)/(1-x^2)/(1-x^3)/(1-x^4)/(1-x^5)/(1-x^6)/(1-x^7)/(1-x^8)/(1-x^9)/(1-x^10)/(1-x^11)/(1-x^12) with(combstruct):ZL13:=[S,{S=Set(Cycle(Z,card<13))}, unlabeled]:seq(count(ZL13,size=n),n=0..46); # Zerinvary Lajos, Sep 24 2007 B:=[S,{S = Set(Sequence(Z,1 <= card),card <=12)},unlabelled]: seq(combstruct[count](B, size=n), n=0..46); # Zerinvary Lajos, Mar 21 2009
-
Mathematica
CoefficientList[ Series[ 1/ Product[ 1 - x^n, {n, 1, 12} ], {x, 0, 60} ], x ] Table[ Length[ Select[ Partitions[n], First[ # ] == 12 & ]], {n, 1, 60} ]
Formula
G.f.: 1/Product_{k=1..12}(1-x^k).
a(n) = a(n-1) + a(n-2) - a(n-5) - a(n-7) + a(n-12) - a(n-13) + 2*a(n-15) + a(n-16) + a(n-17) - a(n-20) - a(n-21) - 2*a(n-22) - a(n-23) - a(n-24) - 2*a(n-26) + a(n-28) + 2*a(n-29) + 2*a(n-30) + 2*a(n-31) + 2*a(n-32) + a(n-33) + a(n-34) - a(n-36) - 2*a(n-37) - a(n-38) - 4*a(n-39) - a(n-40) - 2*a(n-41) - a(n-42) + a(n-44) + a(n-45) + 2*a(n-46) + 2a(n-47) + 2*a(n-48) + 2*a(n-49) + a(n-50) - 2*a(n-52) - a(n-54) - a(n-55) - 2*a(n-56) - a(n-57) - a(n-58) + a(n-61) + a(n-62) + 2*a(n-63) - a(n-65) + a(n-66) - a(n-71) - a(n-73) + a(n-76) + a(n-77) - a(n-78). - David Neil McGrath, Jul 28 2015
Extensions
More terms from Robert G. Wilson v, Dec 11 2000
Comments