cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008650 Molien series of 4 X 4 upper triangular matrices over GF( 3 ).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 3, 3, 5, 5, 5, 7, 7, 7, 9, 9, 9, 12, 12, 12, 15, 15, 15, 18, 18, 18, 23, 23, 23, 28, 28, 28, 33, 33, 33, 40, 40, 40, 47, 47, 47, 54, 54, 54, 63, 63, 63, 72, 72, 72, 81, 81, 81, 93, 93, 93, 105, 105
Offset: 0

Views

Author

Keywords

References

  • D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 105.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)*(1-x^3)*(1-x^9)*(1-x^27)) )); // G. C. Greubel, Sep 06 2019
    
  • Maple
    1/((1-x)*(1-x^3)*(1-x^9)*(1-x^27)): seq(coeff(series(%, x, n+1), x, n), n=0..70);
  • Mathematica
    CoefficientList[Series[1/((1-x)*(1-x^3)*(1-x^9)*(1-x^27)), {x,0,70}], x] (* G. C. Greubel, Sep 06 2019 *)
  • PARI
    my(x='x+O('x^70)); Vec(1/((1-x)*(1-x^3)*(1-x^9)*(1-x^27))) \\ G. C. Greubel, Sep 06 2019
    
  • Sage
    def A008650_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(1/((1-x)*(1-x^3)*(1-x^9)*(1-x^27))).list()
    A008650_list(70) # G. C. Greubel, Sep 06 2019

Formula

a(n) ~ 1/4374*n^3. - Ralf Stephan, Apr 29 2014
G.f.: 1/((1-x)*(1-x^3)*(1-x^9)*(1-x^27)).