cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008654 Theta series of direct sum of 3 copies of hexagonal lattice.

Original entry on oeis.org

1, 18, 108, 234, 234, 864, 756, 900, 1836, 2178, 1296, 4320, 3042, 3060, 5400, 6048, 3690, 10368, 6588, 6516, 11232, 11700, 6480, 19008, 12852, 10818, 18360, 19674, 11700, 30240, 16848, 17316, 29484, 30240, 15552, 43200, 28314, 24660, 39096
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.

Examples

			G.f. = 1 + 18*q + 108*q^2 + 234*q^3 + 234*q^4 + 864*q^5 + 756*q^6 + 900*q^7 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 110.
  • B. C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, see p. 124, Equation (7.19).

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(3), 3), 39); A[1] + 18*A[2]; /* Michael Somos, Aug 26 2015 */
  • Mathematica
    a[ n_] := With[ {A = QPochhammer[ q]^3, A3 = QPochhammer[ q^3]^3}, SeriesCoefficient[ (A^4 + 27 q A3^4) / (A A3), {q, 0, n}]]; (* Michael Somos, Oct 22 2017 *)
  • PARI
    {a(n) = my(A, A3); if( n<0, 0, A = x * O(x^n); A3 = eta(x^3 + A)^3; A = eta(x + A)^3; polcoeff( (A^4 + 27 * x * A3^4) / (A * A3), n))}; /* Michael Somos, Sep 04 2008 */
    

Formula

Expansion of (theta_3(z)*theta_3(3z) + theta_2(z)*theta_2(3z))^3.
Expansion of a(q)^3 in powers of q where a() is a cubic AGM function. - Michael Somos, Sep 04 2008
Expansion of (eta(q)^12 + 27 * eta(q^3)^12) / (eta(q) * eta(q^3))^3 in powers of q. - Michael Somos, Sep 04 2008
Expansion of (f(-q)^12 + 27 * q * f(-q^3)^12) / (f(-q) * f(-q^3))^3 in powers of q where f() is a Ramanujan theta function. - Michael Somos, Sep 04 2008
G.f. is a period 1 Fourier series which satisfies f(-1 / (3 t)) = 3^(3/2) (t/i)^3 f(t) where q = exp(2 Pi i t). - Michael Somos, Sep 04 2008

Extensions

More terms from Michael Somos, Sep 04 2008