A008654 Theta series of direct sum of 3 copies of hexagonal lattice.
1, 18, 108, 234, 234, 864, 756, 900, 1836, 2178, 1296, 4320, 3042, 3060, 5400, 6048, 3690, 10368, 6588, 6516, 11232, 11700, 6480, 19008, 12852, 10818, 18360, 19674, 11700, 30240, 16848, 17316, 29484, 30240, 15552, 43200, 28314, 24660, 39096
Offset: 0
Examples
G.f. = 1 + 18*q + 108*q^2 + 234*q^3 + 234*q^4 + 864*q^5 + 756*q^6 + 900*q^7 + ...
References
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 110.
- B. C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, see p. 124, Equation (7.19).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- G. Nebe and N. J. A. Sloane, Home page for hexagonal (or triangular) lattice A2
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Magma
A := Basis( ModularForms( Gamma1(3), 3), 39); A[1] + 18*A[2]; /* Michael Somos, Aug 26 2015 */
-
Mathematica
a[ n_] := With[ {A = QPochhammer[ q]^3, A3 = QPochhammer[ q^3]^3}, SeriesCoefficient[ (A^4 + 27 q A3^4) / (A A3), {q, 0, n}]]; (* Michael Somos, Oct 22 2017 *)
-
PARI
{a(n) = my(A, A3); if( n<0, 0, A = x * O(x^n); A3 = eta(x^3 + A)^3; A = eta(x + A)^3; polcoeff( (A^4 + 27 * x * A3^4) / (A * A3), n))}; /* Michael Somos, Sep 04 2008 */
Formula
Expansion of (theta_3(z)*theta_3(3z) + theta_2(z)*theta_2(3z))^3.
Expansion of a(q)^3 in powers of q where a() is a cubic AGM function. - Michael Somos, Sep 04 2008
Expansion of (eta(q)^12 + 27 * eta(q^3)^12) / (eta(q) * eta(q^3))^3 in powers of q. - Michael Somos, Sep 04 2008
Expansion of (f(-q)^12 + 27 * q * f(-q^3)^12) / (f(-q) * f(-q^3))^3 in powers of q where f() is a Ramanujan theta function. - Michael Somos, Sep 04 2008
G.f. is a period 1 Fourier series which satisfies f(-1 / (3 t)) = 3^(3/2) (t/i)^3 f(t) where q = exp(2 Pi i t). - Michael Somos, Sep 04 2008
Extensions
More terms from Michael Somos, Sep 04 2008
Comments