cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A109041 Expansion of eta(q)^9 / eta(q^3)^3 in powers of q.

Original entry on oeis.org

1, -9, 27, -9, -117, 216, 27, -450, 459, -9, -648, 1080, -117, -1530, 1350, 216, -1845, 2592, 27, -3258, 2808, -450, -3240, 4752, 459, -5409, 4590, -9, -5850, 7560, -648, -8658, 7371, 1080, -7776, 10800, -117, -12330, 9774, -1530, -11016, 15120, 1350, -16650
Offset: 0

Views

Author

Michael Somos, Jun 17 2005

Keywords

Comments

Number 4 of the 74 eta-quotients listed in Table I of Martin (1996).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 - 9*q + 27*q^2 - 9*q^3 - 117*q^4 + 216*q^5 + 27*q^6 - 450*q^7 + ...
		

References

  • G. E. Andrews and B. C. Berndt, Ramanujan's lost notebook, Part I, Springer, New York, 2005, MR2135178 (2005m:11001) See p. 313, Equ. (14.2.13).

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(3), 3), 44); A[1] - 9*A[2]; /* Michael Somos, May 18 2015 */
  • Mathematica
    a[ n_] := If[ n < 1, Boole[ n == 0], - 9 DivisorSum[ n, #^2 KroneckerSymbol[ -3, #] &]]; (* Michael Somos, Jul 19 2012 *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ q]^3 / QPochhammer[ q^3])^3, {q, 0, n}]; (* Michael Somos, Jul 19 2012 *)
  • PARI
    {a(n) = if( n<1, n==0, -9 * sumdiv( n, d, d^2 * kronecker(-3, d)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^9 / eta(x^3 + A)^3, n))};
    

Formula

G.f.: Product_{k>0} (1 - x^k)^9 / (1 - x^3)^3 = 1 - 9 * Sum_{k>0} x^k * (1 - x^k -6 * x^(2*k) - x^(3*k) + x^(4*k)) / (1 + x^k + x^(2*k))^3.
Expansion of b(q)^3 in powers of q where b() is a cubic AGM theta function.
Euler transform of period 3 sequence [ -9, -9, -6, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v^3 + u*w * (u + 6*v - 8*w).
Given A = A0 + A1 + A2 is the 3-section, then 0 = A1^3 + A2^3 - 3*A0*A1*A2. A0 = A(q^3) = b(q^3)^3, A1 = -3 * a(q^3)^2 * c(q^3), A2 = 3 * a(q^3) * c(q^3)^2 where a(), b(), c() are cubic AGM theta functions.
G.f. is a period 1 Fourier series which satisfies f(-1 / (3 t)) = 19683^(1/2) (t/i)^3 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A106402. - Michael Somos, Mar 11 2012
a(n) = -9 * A103440(n) unless n = 0. a(6*n + 5) = 216 * A134340(n).
A008654(n) = a(n) + 27 * A106402(n) is the identity a(q)^3 = b(q)^3 + c(q)^3. - Michael Somos, Jul 19 2012
a(n) = -9 * b(n) where b(n) is multiplicative with a(0) = 1, b(p^e) = 1, if p=3, b(p^e) = b(p) * b(p^(e-1)) + Kronecker(-3, p) * p^2 * b(p^(e-2)) otherwise. - Michael Somos, May 18 2015
Convolution cube of A005928. - Michael Somos, May 18 2015

A008655 Theta series of direct sum of 4 copies of hexagonal lattice.

Original entry on oeis.org

1, 24, 216, 888, 1752, 3024, 7992, 8256, 14040, 24216, 27216, 31968, 64824, 52752, 74304, 111888, 112344, 117936, 217944, 164640, 220752, 305472, 287712, 292032, 519480, 378024, 474768, 654072
Offset: 0

Views

Author

Keywords

Comments

The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.
Convolution of A008654 and A004016. Convolution square of A008653. - R. J. Mathar, Feb 22 2021

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 110.

Programs

  • Maple
    A008655 := proc(n)
            add( A004016(i)*x^i,i=0..n) ;
            coeftayl(%^4,x=0,n) ;
    end proc: # R. J. Mathar, Feb 22 2021
  • Mathematica
    terms = 28; s = (EllipticTheta[3, 0, q]^3 + EllipticTheta[3, Pi/3, q]^3 + EllipticTheta[3, 2 Pi/3, q]^3)^4/(81*EllipticTheta[3, 0, q^3]^4) + O[q]^(2 terms); CoefficientList[s, q^2][[1 ;; terms]] (* Jean-François Alcover, Jul 07 2017, from LatticeData(A2) *)

Formula

Expansion of (theta_3(z)*theta_3(3z) + theta_2(z)*theta_2(3z))^4.

A320676 Expansion of (r(q) * s(q))^3 where r(), s() are cubic AGM theta functions.

Original entry on oeis.org

1, 9, -27, -261, 765, 2214, -11529, 11304, 24813, -81423, 71118, 106812, -354609, 262350, 385992, -1049166, 739917, 990306, -2713203, 1709604, 2287710, -5646600, 3707532, 4448952, -11344833, 6737319, 8450838, -19943757, 12298248, 14238558, -34639974, 19856736
Offset: 0

Views

Author

Seiichi Manyama, Oct 19 2018

Keywords

Comments

Cubic AGM theta functions: r(q) (see A004016), s(q) (A005928), t(q) (A005882).

Crossrefs

Formula

Expansion of (eta(q)^3 * (eta(q)^3 + 9 * eta(q^9)^3) / eta(q^3)^2)^3 in powers of q.
Showing 1-3 of 3 results.