cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A205973 a(n) = Fibonacci(n)*A109041(n) for n>=1, with a(0)=1, where A109041 lists the coefficients in eta(q)^9/eta(q^3)^3.

Original entry on oeis.org

1, -9, 27, -18, -351, 1080, 216, -5850, 9639, -306, -35640, 96120, -16848, -356490, 508950, 131760, -1821015, 4139424, 69768, -13621698, 18996120, -4925700, -57383640, 136178064, 21282912, -405810225, 557193870, -1767762, -1859194350, 3887571240, -539161920
Offset: 0

Views

Author

Paul D. Hanna, Feb 04 2012

Keywords

Comments

Compare the g.f. to the Lambert series of A109041:
1 - 9*Sum_{n>=1} Kronecker(n,3)*n^2*x^n/(1-x^n).

Examples

			G.f.: A(x) = 1 - 9*x + 27*x^2 - 18*x^3 - 351*x^4 + 1080*x^5 + 216*x^6 +...
where A(x) = 1 - 1*9*x + 1*27*x^2 - 2*9*x^3 - 3*117*x^4 + 5*216*x^5 + 8*27*x^6 - 13*450*x^7 + 21*459*x^8 +...+ Fibonacci(n)*A109041(n)*^n +...
The g.f. is also given by the identity:
A(x) = 1 - 9*( 1*1*x/(1-x-x^2) - 1*4*x^2/(1-3*x^2+x^4) + 3*16*x^4/(1-7*x^4+x^8) - 5*25*x^5/(1-11*x^5-x^10) + 13*49*x^7/(1-29*x^7-x^14) - 21*64*x^8/(1-47*x^8+x^16) +...).
The values of the symbol Kronecker(n,3) repeat [1,-1,0, ...].
		

Crossrefs

Cf. A209453 (Pell variant).

Programs

  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=polcoeff(1 - 9*sum(m=1,n,fibonacci(m)*kronecker(m,3)*m^2*x^m/(1-Lucas(m)*x^m+(-1)^m*x^(2*m) +x*O(x^n))),n)}
    for(n=0,40,print1(a(n),", "))

Formula

G.f.: 1 - 9*Sum_{n>=1} Fibonacci(n)*Kronecker(n,3)*n^2*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)).

A209453 a(n) = Pell(n)*A109041(n) for n>=1, with a(0)=1, where A109041 lists the coefficients in eta(q)^9/eta(q^3)^3.

Original entry on oeis.org

1, -9, 54, -45, -1404, 6264, 1890, -76050, 187272, -8865, -1540944, 6200280, -1621620, -51195330, 109055700, 42125400, -868685040, 2946297888, 74093670, -21584605122, 44912353824, -17376284250, -302040439920, 1069478852112, 249392931480, -7095191496489
Offset: 0

Views

Author

Paul D. Hanna, Mar 10 2012

Keywords

Comments

Compare the g.f. to the Lambert series of A109041:
1 - 9*Sum_{n>=1} Kronecker(n,3)*n^2*x^n/(1-x^n).

Examples

			G.f.: A(x) = 1 - 9*x + 54*x^2 - 45*x^3 - 1404*x^4 + 6264*x^5 + 1890*x^6 +...
where A(x) = 1 - 1*9*x + 2*27*x^2 - 5*9*x^3 - 12*117*x^4 + 29*216*x^5 + 70*27*x^6 - 169*450*x^7 + 408*459*x^8 +...+ Pell(n)*A109041(n)*^n +...
The g.f. is also given by the identity:
A(x) = 1 - 9*( 1*1*x/(1-2*x-x^2) - 2*4*x^2/(1-6*x^2+x^4) + 12*16*x^4/(1-34*x^4+x^8) - 29*25*x^5/(1-82*x^5-x^10) + 169*49*x^7/(1-478*x^7-x^14) - 408*64*x^8/(1-1154*x^8+x^16) +...).
The values of the symbol Kronecker(n,3) repeat [1,-1,0, ...].
		

Crossrefs

Programs

  • Mathematica
    A109041[n_]:= If[n < 1, Boole[n == 0], -9 DivisorSum[n, #^2 KroneckerSymbol[-3, #] &]]; Join[{1}, Table[Fibonacci[n, 2]*A109041[n], {n, 1, 50}]] (* G. C. Greubel, Jan 02 2018 *)
  • PARI
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)}
    {A002203(n)=Pell(n-1)+Pell(n+1)}
    {a(n)=polcoeff(1 - 9*sum(m=1,n,Pell(m)*kronecker(m,3)*m^2*x^m/(1-A002203(m)*x^m+(-1)^m*x^(2*m) +x*O(x^n))),n)}
    for(n=0,40,print1(a(n),", "))

Formula

G.f.: 1 - 9*Sum_{n>=1} Pell(n)*Kronecker(n,3)*n^2*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)), where A002203(n) = Pell(n-1) + Pell(n+1).

A106402 Expansion of eta(q^3)^9 / eta(q)^3 in powers of q.

Original entry on oeis.org

1, 3, 9, 13, 24, 27, 50, 51, 81, 72, 120, 117, 170, 150, 216, 205, 288, 243, 362, 312, 450, 360, 528, 459, 601, 510, 729, 650, 840, 648, 962, 819, 1080, 864, 1200, 1053, 1370, 1086, 1530, 1224, 1680, 1350, 1850, 1560, 1944, 1584, 2208, 1845, 2451, 1803, 2592
Offset: 1

Views

Author

Michael Somos, May 02 2005

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Number 3 of the 74 eta-quotients listed in Table I of Martin (1996).
a(n+1) is the number of partition triples of n where each partition is 3-core (see Theorem 3.1 of Wang link).
Convolution cube of A033687.
Convolution square is A198958. - Michael Somos, Dec 26 2015

Examples

			G.f. = q + 3*q^2 + 9*q^3 + 13*q^4 + 24*q^5 + 27*q^6 + 50*q^7 + 51*q^8 + ...
		

References

  • George E. Andrews and Bruce C. Berndt, Ramanujan's lost notebook, Part I, Springer, New York, 2005, MR2135178 (2005m:11001). See p. 314, Eq. (14.2.14).

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(3), 3), 52); A[2]; /* Michael Somos, May 18 2015 */
  • Mathematica
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, #^2 KroneckerSymbol[ n/#, 3] &]]; (* Michael Somos, Jul 19 2012 *)
    a[ n_] := SeriesCoefficient[ q (QPochhammer[ q^3]^3 / QPochhammer[ q])^3, {q, 0, n}]; (* Michael Somos, Jul 19 2012 *)
    nmax = 40; Rest[CoefficientList[Series[x * Product[(1 - x^(3*k))^9 / (1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Sep 07 2015 *)
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^3 + A)^9 / eta(x + A)^3, n))};
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, d^2 * kronecker( n/d, 3)))};
    
  • PARI
    {a(n) = my(A, p, e, u); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; u = kronecker(-3, p); ((p^2)^(e+1) - u^(e+1)) / (p^2 - u)))};
    
  • PARI
    a(n) = sumdiv(n, d, ((d % 3) == 1)*(n/d)^2) - sumdiv(n, d, ((d % 3)== 2)*(n/d)^2); \\ Michel Marcus, Jul 14 2015
    

Formula

Expansion of (c(q) / 3)^3 in powers of q where c(q) is a cubic AGM theta function.
Euler transform of period 3 sequence [ 3, 3, -6, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v^3 + 6*u*v*w + 8*u*w^2 - u^2*w.
G.f.: Sum_{k>0} k^2 * x^k / (1 + x^k + x^(2*k)) = x * Product_{k>0} (1 - x^(3*k))^9 / (1 - x^k)^3.
a(n) is multiplicative and a(p^e) = ((p^2)^(e+1) - u^(e+1)) / (p^2 - u) where u = 0, 1, -1 when p == 0, 1, 2 (mod 3). - Michael Somos, Oct 19 2005
G.f. is a period 1 Fourier series which satisfies f(-1 / (3 t)) = 27^(-1/2) (t/i)^3 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A109041.
a(3*n) = 9 * a(n). a(3*n + 1) = A231947(n). - Michael Somos, May 18 2015
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = 4*Pi^3/(81*sqrt(3)) = 0.8840238... (A129404). - Amiram Eldar, Nov 09 2023

A231947 Expansion of q^(-1/3) * a(q)^2 * c(q) / 3 in powers of q where a(), c() are cubic AGM theta functions.

Original entry on oeis.org

1, 13, 50, 72, 170, 205, 362, 360, 601, 650, 962, 864, 1370, 1224, 1850, 1584, 2451, 2210, 2880, 2520, 3722, 3277, 4490, 3600, 5330, 4706, 6242, 5040, 6912, 6120, 8500, 6624, 9410, 7813, 10610, 8424, 11882, 10250, 12672, 10440, 14521, 12506, 16130, 12240
Offset: 0

Views

Author

Michael Somos, Nov 15 2013

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 + 13*x + 50*x^2 + 72*x^3 + 170*x^4 + 205*x^5 + 362*x^6 + 360*x^7 + ...
G.f. = q + 13*q^4 + 50*q^7 + 72*q^10 + 170*q^13 + 205*q^16 + 362*q^19 + ...
		

Crossrefs

Programs

  • Mathematica
    eta[q_]:= q^(1/24)*QPochhammer[q]; CoefficientList[Series[q^(-1/3)*(eta[q]^3 + 9*eta[q^9]^3)^2*eta[q^3]/eta[q], {q, 0, 50}], q] (* G. C. Greubel, Aug 08 2018 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^3 + 9 * x * eta(x^9 + A)^3)^2 * eta(x^3 + A) / eta(x + A), n))}

Formula

Expansion of q^(-1/3) * (eta(q)^3 + 9 * eta(q^9)^3)^2 * eta(q^3) / eta(q) in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (9 t)) = 3^(1/2) (t/i)^3 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A231948.
-9 * a(n) = A109041(3*n + 1).

A103440 a(n) = Sum[d|n, d==1 (mod 3), d^2] - Sum[d|n, d==2 (mod 3), d^2].

Original entry on oeis.org

1, -3, 1, 13, -24, -3, 50, -51, 1, 72, -120, 13, 170, -150, -24, 205, -288, -3, 362, -312, 50, 360, -528, -51, 601, -510, 1, 650, -840, 72, 962, -819, -120, 864, -1200, 13, 1370, -1086, 170, 1224, -1680, -150, 1850, -1560, -24, 1584, -2208, 205, 2451, -1803, -288, 2210, -2808, -3, 2880, -2550
Offset: 1

Views

Author

Ralf Stephan, Feb 11 2005

Keywords

Examples

			G.f. = q - 3*q^2 + q^3 + 13*q^4 - 24*q^5 - 3*q^6 + 50*q^7 - 51*q^8 + q^9 + ...
		

Crossrefs

Equals A103637(n) - A103638(n). Cf. A002173.
A109041(n) = -9 * a(n) unless n=0. A014985(n) = a(2^n). -24 * A134340(n) = a(6*n+5).

Programs

  • Maple
    f:= proc(n) local D,d;
      D:= numtheory:-divisors(n/3^padic:-ordp(n,3));
      -add((-1)^(d mod 3)*d^2, d = D)
    end proc:
    map(f, [$1..100]); # Robert Israel, Aug 16 2018
  • Mathematica
    a[n_] := Sum[m=Mod[d, 3]; (Boole[m==1]-Boole[m==2]) d^2, {d, Divisors[n]}];
    Array[a, 56] (* Jean-François Alcover, Aug 16 2018 *)
    a[ n_] := SeriesCoefficient[ (1 - QPochhammer[ x]^9 / QPochhammer[ x^3]^3) / 9, {x, 0, n}]; (* Michael Somos, Sep 07 2018 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, d^2 * kronecker( -3, d)))}; /* Michael Somos, Oct 21 2007 */
    
  • PARI
    {a(n) = my(A, p, e, a0, a1, x, y, z); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, 1, z = kronecker( -3, p) * p^2; a0 = 1; a1 = y = z + 1; for(i=2, e, x = y * a1 - z * a0; a0 = a1; a1 = x); a1)))}; /* Michael Somos, Oct 21 2007 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (1 - eta(x + A)^9 / eta(x^3 + A)^3) / 9, n))}; /* Michael Somos, Oct 21 2007 */

Formula

G.f.: F(q) = Sum_{n>=1} A049347(n-1) * n^2 * q^n / (1 - q^n).
G.f.: F(q) = -q * G'(q) / (9*G(q)), with G(q) = Product_{n>=1} (1 - q^n)^(9*n * A049347(n-1)).
a(n) is multiplicative with a(3^e) = 1, a(p^e) = a(p) * a(p^(e-1)) - z * a(p^(e-2)) where z = Kronecker(-3, p) * p^2 and a(p) = z + 1.
a(3*n) = a(n).
G.f.: Sum_{k>0} x^k * (1 - x^k - 6*x^(2*k) - x^(3*k) + x^(4*k)) / (1 + x^k + x^(2*k))^3. - Michael Somos, Oct 21 2007
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u^2 - v + w + 3*v^2 - 8*w^2 + 6*v*w - 8*u*w + 6*u*v - 9*v^3 - 54*u*v*w + 72*u*w^2 - 9*u^2*w. - Michael Somos, Dec 23 2007

A134340 Expansion of psi(x)^3 * f(-x^3)^3 / chi(-x)^2 in powers of x where psi(), chi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 5, 12, 22, 35, 50, 70, 92, 117, 145, 170, 210, 250, 287, 330, 362, 425, 477, 532, 600, 626, 715, 782, 850, 925, 962, 1100, 1162, 1247, 1335, 1370, 1520, 1617, 1750, 1810, 1850, 2040, 2147, 2262, 2380, 2451, 2625, 2752, 2882, 3015, 3005, 3290, 3500, 3577
Offset: 0

Views

Author

Michael Somos, Oct 21 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 5*x + 12*x^2 + 22*x^3 + 35*x^4 + 50*x^5 + 70*x^6 + 92*x^7 + 117*x^8 + ...
G.f. = q^5 + 5*q^11 + 12*q^17 + 22*q^23 + 35*q^29 + 50*q^35 + 70*q^41 + 94*q^47 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, (-1/24) DivisorSum[ 6 n + 5, #^2 KroneckerSymbol[ -3, #] &]]; (* Michael Somos, Oct 25 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x]^2 QPochhammer[ x^3]^3 EllipticTheta[ 2, 0, x^(1/2)]^3 / (8 x^(3/8)), {x, 0, n}]; (* Michael Somos, Oct 25 2015 *)
  • PARI
    {a(n) = if( n<0, 0, n = 6*n + 5; sumdiv(n, d, d^2 * kronecker( -3, d)) / -24 )};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^8 * eta(x^3 + A)^3 / eta(x + A)^5, n))};

Formula

Expansion of q^(-5/6) * eta(q^2)^8 * eta(q^3)^3 / eta(q)^5 in powers of q.
Euler transform of period 6 sequence [ 5, -3, 2, -3, 5, -6, ...].
-24 * a(n) = A103440(6*n + 5). 216 * a(n) = A109041(6*n + 5).

A231948 Expansion of a(q)^2 * b(q) in powers of q where a(), b() are cubic AGM theta functions.

Original entry on oeis.org

1, 9, 0, -90, 117, 0, -216, 450, 0, -738, 648, 0, -1170, 1530, 0, -1728, 1845, 0, -2160, 3258, 0, -4500, 3240, 0, -3672, 5409, 0, -6570, 5850, 0, -6480, 8658, 0, -8640, 7776, 0, -9594, 12330, 0, -15300, 11016, 0, -10800, 16650, 0, -17280, 14256, 0, -18450
Offset: 0

Views

Author

Michael Somos, Nov 15 2013

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 + 9*q - 90*q^3 + 117*q^4 - 216*q^6 + 450*q^7 - 738*q^9 + ...
		

Crossrefs

Programs

  • Mathematica
    eta[q_]:= q^(1/24)*QPochhammer[q]; CoefficientList[Series[(eta[q]^3 + 9*eta[q^9]^3)^2*(eta[q]/eta[q^3])^3, {q, 0, 50}], q] (* G. C. Greubel, Aug 08 2018 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^3 + 9 * x * eta(x^9 + A)^3)^2 * (eta(x + A) / eta(x^3 + A))^3, n))}

Formula

Expansion of (eta(q)^3 + 9 * eta(q^9)^3)^2 * (eta(q) / eta(q^3))^3 in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (9 t)) = 3^(11/2) (t/i)^3 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A231947.
a(3*n + 2) = 0. a(3*n + 1) = 9 * A231947(n). 3 * A109041(n) = a(3*n) + A109041(3*n) + A181976(3*n).

A215711 Expansion of a(q) * b(q)^3 in powers of q where a(), b() are cubic AGM theta functions.

Original entry on oeis.org

1, -3, -27, 159, -219, -378, 1431, -1032, -1755, 4533, -3402, -3996, 11607, -6594, -9288, 20034, -14043, -14742, 40797, -20580, -27594, 54696, -35964, -36504, 93015, -47253, -59346, 122631, -75336, -73170, 180306, -89376, -112347, 211788, -132678, -130032
Offset: 0

Views

Author

Michael Somos, Aug 21 2012

Keywords

Examples

			G.f. = 1 - 3*q - 27*q^2 + 159*q^3 - 219*q^4 - 378*q^5 + 1431*q^6 - 1032*q^7 + ...
		

Crossrefs

Programs

  • Mathematica
    eta[q_]:= q^(1/24)*QPochhammer[q]; CoefficientList[Series[(1 + 9*(eta[q^9]/eta[q])^3)*(eta[q]^3/eta[q^3])^4, {q, 0, 50}], q] (* G. C. Greubel, Aug 10 2018 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (1 + 9 * x * (eta(x^9 + A) / eta(x + A))^3) * (eta(x + A)^3 / eta(x^3 + A))^4, n))}

Formula

Expansion of (1 + 9 * q * (eta(q^9) / eta(q))^3) * (eta(q)^3 / eta(q^3))^4 in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (3 t)) = 3^5 (t/i)^4 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A198956.
G.f.: 1 - 3 * (Sum_{k>0} k^3 * x^k / (1 - x^k) - 3 * (3*k)^3 * x^(3*k) / (1 - x^(3*k))).
Convolution of A215690 and A133078. Convolution of A004016 and A109041.

A320677 Expansion of s(q)^6 where s() is cubic AGM theta functions.

Original entry on oeis.org

1, -18, 135, -504, 657, 2052, -10071, 12384, 20277, -83610, 72090, 122040, -355581, 245124, 379512, -1050624, 770589, 966492, -2700081, 1724616, 2287062, -5636880, 3616164, 4471632, -11385657, 6820722, 8554194, -19963440, 12302568, 14113332, -34631226, 19737936
Offset: 0

Views

Author

Seiichi Manyama, Oct 19 2018

Keywords

Comments

Cubic AGM theta functions: r(q) (see A004016), s(q) (A005928), t(q) (A005882).

Crossrefs

s(q)^m: A005928 (m=1), A242874 (m=2), A109041 (m=3), A133078 (m=4), this sequence (m=6).

Formula

Expansion of (eta(q)^3/eta(q^3))^6 in powers of q.
Showing 1-9 of 9 results.