cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A205973 a(n) = Fibonacci(n)*A109041(n) for n>=1, with a(0)=1, where A109041 lists the coefficients in eta(q)^9/eta(q^3)^3.

Original entry on oeis.org

1, -9, 27, -18, -351, 1080, 216, -5850, 9639, -306, -35640, 96120, -16848, -356490, 508950, 131760, -1821015, 4139424, 69768, -13621698, 18996120, -4925700, -57383640, 136178064, 21282912, -405810225, 557193870, -1767762, -1859194350, 3887571240, -539161920
Offset: 0

Views

Author

Paul D. Hanna, Feb 04 2012

Keywords

Comments

Compare the g.f. to the Lambert series of A109041:
1 - 9*Sum_{n>=1} Kronecker(n,3)*n^2*x^n/(1-x^n).

Examples

			G.f.: A(x) = 1 - 9*x + 27*x^2 - 18*x^3 - 351*x^4 + 1080*x^5 + 216*x^6 +...
where A(x) = 1 - 1*9*x + 1*27*x^2 - 2*9*x^3 - 3*117*x^4 + 5*216*x^5 + 8*27*x^6 - 13*450*x^7 + 21*459*x^8 +...+ Fibonacci(n)*A109041(n)*^n +...
The g.f. is also given by the identity:
A(x) = 1 - 9*( 1*1*x/(1-x-x^2) - 1*4*x^2/(1-3*x^2+x^4) + 3*16*x^4/(1-7*x^4+x^8) - 5*25*x^5/(1-11*x^5-x^10) + 13*49*x^7/(1-29*x^7-x^14) - 21*64*x^8/(1-47*x^8+x^16) +...).
The values of the symbol Kronecker(n,3) repeat [1,-1,0, ...].
		

Crossrefs

Cf. A209453 (Pell variant).

Programs

  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=polcoeff(1 - 9*sum(m=1,n,fibonacci(m)*kronecker(m,3)*m^2*x^m/(1-Lucas(m)*x^m+(-1)^m*x^(2*m) +x*O(x^n))),n)}
    for(n=0,40,print1(a(n),", "))

Formula

G.f.: 1 - 9*Sum_{n>=1} Fibonacci(n)*Kronecker(n,3)*n^2*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)).

A209452 a(n) = Pell(n)*A122859(n) for n>=1, with a(0)=1, where A122859 lists the coefficients in phi(-q)^3/phi(-q^3) and phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -6, 24, -30, -72, 0, 840, -2028, 4896, -5910, 0, 0, -83160, -401532, 1938768, 0, -2824992, 0, 32930520, -79501308, 0, -463367580, 0, 0, 6520076640, -7870428726, 76003583088, -45872220270, -221490672624, 0, 0, -3116610274188, 7524162792576, 0, 0, 0, -127800022137480
Offset: 0

Views

Author

Paul D. Hanna, Mar 10 2012

Keywords

Comments

Compare the g.f. to the Lambert series of A122859: 1 - 6*Sum_{n>=1} Kronecker(n,3)*x^n/(1+x^n).

Examples

			G.f.: A(x) = 1 - 6*x + 24*x^2 - 30*x^3 - 72*x^4 + 840*x^6 - 2028*x^7 + ...
where A(x) = 1 - 1*6*x + 2*12*x^2 - 5*6*x^3 - 12*6*x^4 + 70*12*x^6 - 169*12*x^7 + 408*12*x^8 - 985*6*x^9 + ... + Pell(n)*A122859(n)*x^n + ...
The g.f. is also given by the identity:
A(x) = 1 - 6*( 1*x/(1+2*x-x^2) - 2*x^2/(1+6*x^2+x^4) + 12*x^4/(1+34*x^4+x^8) - 29*x^5/(1+82*x^5-x^10) + 169*x^7/(1+478*x^7-x^14) - 408*x^8/(1+1154*x^8+x^16) + ...).
The values of the symbol Kronecker(n,3) repeat [1,-1,0, ...].
		

Crossrefs

Programs

  • Mathematica
    A122859[n_]:= SeriesCoefficient[EllipticTheta[4, 0, q]^3/EllipticTheta[4, 0, q^3], {q, 0, n}]; Join[{1}, Table[Fibonacci[n, 2]*A122859[n], {n, 1, 50}]] (* G. C. Greubel, Jan 02 2017 *)
  • PARI
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)}
    {A002203(n)=Pell(n-1)+Pell(n+1)}
    {a(n)=polcoeff(1 - 6*sum(m=1,n,Pell(m)*kronecker(m,3)*x^m/(1+A002203(m)*x^m+(-1)^m*x^(2*m) +x*O(x^n))),n)}
    for(n=0,40,print1(a(n),", "))

Formula

G.f.: 1 - 6*Sum_{n>=1} Pell(n)*Kronecker(n,3)*x^n/(1 + A002203(n)*x^n + (-1)^n*x^(2*n)), where A002203(n) = Pell(n-1) + Pell(n+1).

A209454 a(n) = Pell(n)*A033719(n) for n>=1, with a(0)=1, where A033719 lists the coefficients in theta_3(q)*theta_3(q^7).

Original entry on oeis.org

1, 2, 0, 0, 24, 0, 0, 338, 1632, 1970, 0, 22964, 0, 0, 0, 0, 2824992, 0, 0, 0, 0, 0, 0, 900234724, 0, 2623476242, 0, 0, 36915112104, 178241928596, 0, 0, 5016108528384, 0, 0, 0, 42600007379160, 205691031143924, 0, 0, 0, 0, 0, 40725785296405556, 98320743200877072, 0, 0, 0, 0
Offset: 0

Views

Author

Paul D. Hanna, Mar 10 2012

Keywords

Comments

Compare g.f. to 1 + 2*Sum_{n>=1} Kronecker(n,7)*x^n/(1-(-x)^n) (the Lambert series of A033719).

Examples

			G.f.: A(x) = 1 + 2*x + 24*x^4 + 338*x^7 + 1632*x^8 + 1970*x^9 + 22964*x^11 +...
where A(x) = 1 + 1*2*x + 12*2*x^4 + 169*2*x^7 + 408*4*x^8 + 985*2*x^9 + 5741*4*x^11 + 470832*6*x^16 + 225058681*4*x^23 +...+ Pell(n)*A033719(n)*x^n +...
The g.f. is also given by the identity:
A(x) = 1 + 2*( 1*x/(1+2*x-x^2) + 2*x^2/(1-6*x^2+x^4) - 5*x^3/(1+14*x^3-x^6) + 12*x^4/(1-34*x^4+x^8) - 29*x^5/(1+82*x^5-x^10) - 70*x^6/(1-198*x^6+x^12) + 0*169*13*x^7/(1+478*x^7-x^14) +...).
The values of the symbol Kronecker(n,7) repeat [1,1,-1,1,-1,-1,0, ...].
		

Crossrefs

Programs

  • Mathematica
    A033719[n_]:= SeriesCoefficient[EllipticTheta[3, 0, x] EllipticTheta[3, 0, x^7], {x, 0, n}]; Join[{1}, Table[Fibonacci[n, 2]*A033719[n], {n, 1, 50}]] (* G. C. Greubel, Jan 02 2017 *)
  • PARI
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)}
    {A002203(n)=Pell(n-1)+Pell(n+1)}
    {a(n)=polcoeff(1 + 2*sum(m=1,n,Pell(m)*kronecker(m,7)*x^m/(1-A002203(m)*(-x)^m+(-1)^m*x^(2*m) +x*O(x^n))),n)}
    for(n=0,50,print1(a(n),", "))

Formula

G.f.: 1 + 2*Sum_{n>=1} Pell(n)*Kronecker(n,7)*x^n/(1 - A002203(n)*(-x)^n + (-1)^n*x^(2*n)), where A002203(n) = Pell(n-1) + Pell(n+1).
Showing 1-3 of 3 results.