cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A109041 Expansion of eta(q)^9 / eta(q^3)^3 in powers of q.

Original entry on oeis.org

1, -9, 27, -9, -117, 216, 27, -450, 459, -9, -648, 1080, -117, -1530, 1350, 216, -1845, 2592, 27, -3258, 2808, -450, -3240, 4752, 459, -5409, 4590, -9, -5850, 7560, -648, -8658, 7371, 1080, -7776, 10800, -117, -12330, 9774, -1530, -11016, 15120, 1350, -16650
Offset: 0

Views

Author

Michael Somos, Jun 17 2005

Keywords

Comments

Number 4 of the 74 eta-quotients listed in Table I of Martin (1996).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 - 9*q + 27*q^2 - 9*q^3 - 117*q^4 + 216*q^5 + 27*q^6 - 450*q^7 + ...
		

References

  • G. E. Andrews and B. C. Berndt, Ramanujan's lost notebook, Part I, Springer, New York, 2005, MR2135178 (2005m:11001) See p. 313, Equ. (14.2.13).

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(3), 3), 44); A[1] - 9*A[2]; /* Michael Somos, May 18 2015 */
  • Mathematica
    a[ n_] := If[ n < 1, Boole[ n == 0], - 9 DivisorSum[ n, #^2 KroneckerSymbol[ -3, #] &]]; (* Michael Somos, Jul 19 2012 *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ q]^3 / QPochhammer[ q^3])^3, {q, 0, n}]; (* Michael Somos, Jul 19 2012 *)
  • PARI
    {a(n) = if( n<1, n==0, -9 * sumdiv( n, d, d^2 * kronecker(-3, d)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^9 / eta(x^3 + A)^3, n))};
    

Formula

G.f.: Product_{k>0} (1 - x^k)^9 / (1 - x^3)^3 = 1 - 9 * Sum_{k>0} x^k * (1 - x^k -6 * x^(2*k) - x^(3*k) + x^(4*k)) / (1 + x^k + x^(2*k))^3.
Expansion of b(q)^3 in powers of q where b() is a cubic AGM theta function.
Euler transform of period 3 sequence [ -9, -9, -6, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v^3 + u*w * (u + 6*v - 8*w).
Given A = A0 + A1 + A2 is the 3-section, then 0 = A1^3 + A2^3 - 3*A0*A1*A2. A0 = A(q^3) = b(q^3)^3, A1 = -3 * a(q^3)^2 * c(q^3), A2 = 3 * a(q^3) * c(q^3)^2 where a(), b(), c() are cubic AGM theta functions.
G.f. is a period 1 Fourier series which satisfies f(-1 / (3 t)) = 19683^(1/2) (t/i)^3 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A106402. - Michael Somos, Mar 11 2012
a(n) = -9 * A103440(n) unless n = 0. a(6*n + 5) = 216 * A134340(n).
A008654(n) = a(n) + 27 * A106402(n) is the identity a(q)^3 = b(q)^3 + c(q)^3. - Michael Somos, Jul 19 2012
a(n) = -9 * b(n) where b(n) is multiplicative with a(0) = 1, b(p^e) = 1, if p=3, b(p^e) = b(p) * b(p^(e-1)) + Kronecker(-3, p) * p^2 * b(p^(e-2)) otherwise. - Michael Somos, May 18 2015
Convolution cube of A005928. - Michael Somos, May 18 2015

A198956 q-expansion of modular form psi_0^4/t_{3B}.

Original entry on oeis.org

0, 1, 9, 27, 73, 126, 243, 344, 585, 729, 1134, 1332, 1971, 2198, 3096, 3402, 4681, 4914, 6561, 6860, 9198, 9288, 11988, 12168, 15795, 15751, 19782, 19683, 25112, 24390, 30618, 29792, 37449, 35964, 44226, 43344, 53217, 50654, 61740, 59346, 73710, 68922, 83592
Offset: 0

Views

Author

N. J. A. Sloane, Nov 01 2011

Keywords

Comments

psi_0 is given in A004016, t_{3B} in A198955.
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = q + 9*q^2 + 27*q^3 + 73*q^4 + 126*q^5 + 243*q^6 + 344*q^7 + 585*q^8 + 729*q^9 + ...
		

Crossrefs

Programs

  • Magma
    Basis( ModularForms( Gamma0(3), 4), 43)[2]; /* Michael Somos, Dec 27 2014 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ q QPochhammer[ q^3]^8 (1 + 9 q (QPochhammer[ q^9] / QPochhammer[ q])^3), {q, 0, n}]; (* Michael Somos, Dec 27 2014 *)
  • PARI
    {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^3 + A)^8 * (1 + 9 * x * (eta(x^9 + A) / eta(x + A))^3), n))}; /* Michael Somos, Aug 23 2012 */
    
  • Sage
    ModularForms( Gamma0(3), 4, prec=43).1;# Michael Somos, May 23 2014
    

Formula

Expansion of a(q) * (c(q) / 3)^3 in powers of q where a(), c() are cubic AGM theta functions. - Michael Somos, Aug 23 2012
Expansion of eta(q^3)^8 * (1 + 9 * (eta(q^9) / eta(q))^3) in powers of q. - Michael Somos, Aug 23 2012
G.f. is a period 1 Fourier series which satisfies f(-1 / (3 t)) = (1/3) (t/i)^4 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A215711. - Michael Somos, Aug 23 2012
Convolution of A004016 and A106402. - Michael Somos, Aug 23 2012
Conjecture: Multiplicative with a(3^e) = 3^e, a(p^e) = sigma_3(p^e) for prime p <> 3. - Andrew Howroyd, Aug 08 2018

A198958 q-expansion of modular form psi_0^6/t_{3B}^2.

Original entry on oeis.org

0, 0, 1, 6, 27, 80, 207, 432, 863, 1512, 2646, 4144, 6585, 9504, 14216, 19476, 27783, 36384, 49977, 63504, 84722, 104736, 136188, 165056, 210717, 250560, 314270, 367902, 455544, 525808, 642762, 733968, 888087, 1003608, 1201554, 1347232
Offset: 0

Views

Author

N. J. A. Sloane, Nov 01 2011

Keywords

Comments

psi_0 is given in A004016, t_{3B} in A198955.
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = q^2 + 6*q^3 + 27*q^4 + 80*q^5 + 207*q^6 + 432*q^7 + 863*q^8 + 1512*q^9 + ...
		

Crossrefs

Cf. A106402.

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(3), 6), 36); A[3]; /* Michael Somos, Feb 22 2015 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ q^2 (QPochhammer[ q^3]^3 / QPochhammer[ q])^6, {q, 0, n}]; (* Michael Somos, Feb 22 2015 *)
  • PARI
    {a(n) = my(A); if( n<2, 0, n -= 2; A = x * O(x^n); polcoeff( (eta(x^3 + A)^3 / eta(x + A))^6, n))}; /* Michael Somos, Jun 07 2012 */
    

Formula

Expansion of (c(q) / 3)^6 in powers of q where c() is a cubic AGM theta function. - Michael Somos, Jun 07 2012
Expansion of (eta(q^3)^3 / eta(q))^6 in powers of q.
G.f.: (Product_{k>0} (1 - x^(3*k))^3 / (1 - x^k))^6. - Michael Somos, Jun 07 2012
Convolution square of A106402. - Michael Somos, Dec 26 2015

A181977 Expansion of b(q) * c(q^3)^2 / 9 in powers of q where b(), c() are cubic AGM theta functions.

Original entry on oeis.org

1, -3, 0, 8, -9, 0, 17, -27, 0, 40, -39, 0, 50, -72, 0, 96, -81, 0, 104, -150, 0, 176, -153, 0, 170, -243, 0, 280, -216, 0, 273, -360, 0, 400, -351, 0, 362, -510, 0, 560, -450, 0, 520, -648, 0, 736, -615, 0, 601, -864, 0, 936, -729, 0, 850, -1086, 0, 1160
Offset: 2

Views

Author

Michael Somos, Apr 04 2012

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = q^2 - 3*q^3 + 8*q^5 - 9*q^6 + 17*q^8 - 27*q^9 + 40*q^11 - 39*q^12 + ...
		

Crossrefs

Cf. A106402.

Programs

  • Mathematica
    eta[q_]:= q^(1/24)*QPochhammer[q]; CoefficientList[Series[(eta[q]* eta[q^9]^2/eta[q^3])^3, {q, 0, 50}], q] (* G. C. Greubel, Aug 11 2018 *)
  • PARI
    {a(n) = my(A); if( n<2, 0, n = n-2; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^9 + A)^2 / eta(x^3 + A))^3, n))};

Formula

Expansion of (eta(q) * eta(q^9)^2 / eta(q^3))^3 in powers of q.
Euler transform of period 9 sequence [-3, -3, 0, -3, -3, 0, -3, -3, -6, ...].
a(3*n + 1) = 0. a(3*n) = -3 * A106402(n).

A266288 Expansion of a(q)^2 * (c(q)/3)^3 in powers of q where a(), c() are cubic AGM theta functions.

Original entry on oeis.org

1, 15, 81, 241, 624, 1215, 2402, 3855, 6561, 9360, 14640, 19521, 28562, 36030, 50544, 61681, 83520, 98415, 130322, 150384, 194562, 219600, 279840, 312255, 390001, 428430, 531441, 578882, 707280, 758160, 923522, 986895, 1185840, 1252800, 1498848, 1581201
Offset: 1

Views

Author

Michael Somos, Dec 26 2015

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Convolution of A008653 and A106402.

Examples

			G.f. = x + 15*x^2 + 81*x^3 + 241*x^4 + 624*x^5 + 1215*x^6 + 2402*x^7 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(3), 5),37);  A[2];
  • Mathematica
    a[ n_] := If[ n < 2, Boole[n == 1], Times @@ (With[{s = {1, -1, 0}[[Mod[#, 3, 1]]]}, ((#^4)^(#2 + 1) - s^(#2 + 1)) / (#^4 - s)] & @@@ FactorInteger[n])];
  • PARI
    {a(n) = my(A, U1, u3, U9); if( n<1, 0, n--; A = x * O(x^n); U1 = eta(x + A)^3; u3 = eta(x^3 + A); U9 = eta(x^9 + A)^3; polcoeff( U1 * u3^7 * (1 + 9*x*U9/U1)^2, n))};
    
  • PARI
    {a(n) = my(A, p, e, s); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, p^(4*e), s=-(-1)^(p%3);  ((p^4)^(e+1) - s^(e+1)) / (p^4 - s))))};
    

Formula

a(n) is multiplicative with a(p^e) = ((p^4)^(e+1) - s^(e+1)) / (p^4 - s) where s = 0 if p = 3, s = 1 if p == 1 (mod 3), s = -1 if p == 2 (mod 3).
Sum_{k=1..n} a(k) ~ c * n^5 / 5, where c = 4*Pi^5/(729*sqrt(3)) = 0.9694405... (A344778). - Amiram Eldar, Nov 09 2023
Showing 1-5 of 5 results.