cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A109041 Expansion of eta(q)^9 / eta(q^3)^3 in powers of q.

Original entry on oeis.org

1, -9, 27, -9, -117, 216, 27, -450, 459, -9, -648, 1080, -117, -1530, 1350, 216, -1845, 2592, 27, -3258, 2808, -450, -3240, 4752, 459, -5409, 4590, -9, -5850, 7560, -648, -8658, 7371, 1080, -7776, 10800, -117, -12330, 9774, -1530, -11016, 15120, 1350, -16650
Offset: 0

Views

Author

Michael Somos, Jun 17 2005

Keywords

Comments

Number 4 of the 74 eta-quotients listed in Table I of Martin (1996).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 - 9*q + 27*q^2 - 9*q^3 - 117*q^4 + 216*q^5 + 27*q^6 - 450*q^7 + ...
		

References

  • G. E. Andrews and B. C. Berndt, Ramanujan's lost notebook, Part I, Springer, New York, 2005, MR2135178 (2005m:11001) See p. 313, Equ. (14.2.13).

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(3), 3), 44); A[1] - 9*A[2]; /* Michael Somos, May 18 2015 */
  • Mathematica
    a[ n_] := If[ n < 1, Boole[ n == 0], - 9 DivisorSum[ n, #^2 KroneckerSymbol[ -3, #] &]]; (* Michael Somos, Jul 19 2012 *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ q]^3 / QPochhammer[ q^3])^3, {q, 0, n}]; (* Michael Somos, Jul 19 2012 *)
  • PARI
    {a(n) = if( n<1, n==0, -9 * sumdiv( n, d, d^2 * kronecker(-3, d)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^9 / eta(x^3 + A)^3, n))};
    

Formula

G.f.: Product_{k>0} (1 - x^k)^9 / (1 - x^3)^3 = 1 - 9 * Sum_{k>0} x^k * (1 - x^k -6 * x^(2*k) - x^(3*k) + x^(4*k)) / (1 + x^k + x^(2*k))^3.
Expansion of b(q)^3 in powers of q where b() is a cubic AGM theta function.
Euler transform of period 3 sequence [ -9, -9, -6, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v^3 + u*w * (u + 6*v - 8*w).
Given A = A0 + A1 + A2 is the 3-section, then 0 = A1^3 + A2^3 - 3*A0*A1*A2. A0 = A(q^3) = b(q^3)^3, A1 = -3 * a(q^3)^2 * c(q^3), A2 = 3 * a(q^3) * c(q^3)^2 where a(), b(), c() are cubic AGM theta functions.
G.f. is a period 1 Fourier series which satisfies f(-1 / (3 t)) = 19683^(1/2) (t/i)^3 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A106402. - Michael Somos, Mar 11 2012
a(n) = -9 * A103440(n) unless n = 0. a(6*n + 5) = 216 * A134340(n).
A008654(n) = a(n) + 27 * A106402(n) is the identity a(q)^3 = b(q)^3 + c(q)^3. - Michael Somos, Jul 19 2012
a(n) = -9 * b(n) where b(n) is multiplicative with a(0) = 1, b(p^e) = 1, if p=3, b(p^e) = b(p) * b(p^(e-1)) + Kronecker(-3, p) * p^2 * b(p^(e-2)) otherwise. - Michael Somos, May 18 2015
Convolution cube of A005928. - Michael Somos, May 18 2015

A134340 Expansion of psi(x)^3 * f(-x^3)^3 / chi(-x)^2 in powers of x where psi(), chi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 5, 12, 22, 35, 50, 70, 92, 117, 145, 170, 210, 250, 287, 330, 362, 425, 477, 532, 600, 626, 715, 782, 850, 925, 962, 1100, 1162, 1247, 1335, 1370, 1520, 1617, 1750, 1810, 1850, 2040, 2147, 2262, 2380, 2451, 2625, 2752, 2882, 3015, 3005, 3290, 3500, 3577
Offset: 0

Views

Author

Michael Somos, Oct 21 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 5*x + 12*x^2 + 22*x^3 + 35*x^4 + 50*x^5 + 70*x^6 + 92*x^7 + 117*x^8 + ...
G.f. = q^5 + 5*q^11 + 12*q^17 + 22*q^23 + 35*q^29 + 50*q^35 + 70*q^41 + 94*q^47 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, (-1/24) DivisorSum[ 6 n + 5, #^2 KroneckerSymbol[ -3, #] &]]; (* Michael Somos, Oct 25 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x]^2 QPochhammer[ x^3]^3 EllipticTheta[ 2, 0, x^(1/2)]^3 / (8 x^(3/8)), {x, 0, n}]; (* Michael Somos, Oct 25 2015 *)
  • PARI
    {a(n) = if( n<0, 0, n = 6*n + 5; sumdiv(n, d, d^2 * kronecker( -3, d)) / -24 )};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^8 * eta(x^3 + A)^3 / eta(x + A)^5, n))};

Formula

Expansion of q^(-5/6) * eta(q^2)^8 * eta(q^3)^3 / eta(q)^5 in powers of q.
Euler transform of period 6 sequence [ 5, -3, 2, -3, 5, -6, ...].
-24 * a(n) = A103440(6*n + 5). 216 * a(n) = A109041(6*n + 5).
Showing 1-2 of 2 results.