cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A047804 Duplicate of A008691.

Original entry on oeis.org

1, 432, 186192, 16881984
Offset: 0

Views

Author

Keywords

Comments

Original title: Theta series of Niemeier lattice of type D_10*E_7^2.

Crossrefs

Cf. A008691. - R. J. Mathar, Oct 18 2008

A008690 Theta series of Niemeier lattice of type D_12^2.

Original entry on oeis.org

1, 528, 183888, 16906176, 397256784, 4631931360, 34414462656, 187481094528, 814924380240, 2975491484496, 9486490093920, 27053228195136, 70486041140928, 169930790281056, 384163798531968
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 407.

Crossrefs

Programs

  • Mathematica
    terms = 15; E4[q_] := 1 + 240 Sum[DivisorSigma[3, n]*q^(2 n), {n, 1, terms}]; E6[q_] := 1 - 504 Sum[DivisorSigma[5, n]*q^(2 n), {n, 1, terms}]; s = 8/9 E4[q]^3 + 1/9 E6[q]^2 + O[q]^(3 terms); Partition[ CoefficientList[s, q], 2][[All, 1]][[1 ;; terms]] (* Jean-François Alcover, Jul 06 2017 *)

Formula

This series is the q-expansion of 8/9 E_4(z)^3 + 1/9 E_6(z)^2. See A004009 and A013973. - Daniel D. Briggs, Nov 25 2011

A008692 Theta series of Niemeier lattice of type A_15 D_9.

Original entry on oeis.org

1, 384, 187344, 16869888, 397468752, 4631235840, 34415333568, 187483505664, 814912215120, 2975507849088, 9486506786400, 27053151211008, 70486094556864, 169930873475328, 384163740664704
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 407.

Crossrefs

Programs

  • Mathematica
    terms = 15; E4[q_] := 1 + 240 Sum[DivisorSigma[3, n]*q^(2 n), {n, 1, terms}]; E6[q_] := 1 - 504 Sum[DivisorSigma[5, n]*q^(2 n), {n, 1, terms}]; s = 29/36 E4[q]^3 + 7/36 E6[q]^2 + O[q]^(3 terms); Partition[ CoefficientList[s, q], 2][[All, 1]][[1 ;; terms]] (* Jean-François Alcover, Jul 06 2017 *)

Formula

This series is the q-expansion of (29*E_4(z)^3 + 7*E_6(z)^2)/36. See A004009 and A013973. - Daniel D. Briggs, Nov 25 2011

A055752 Jacobi form of weight 12 and index 1 for Niemeier lattice of type A_17*E_7 or D_10*E_7^2.

Original entry on oeis.org

1, 0, 0, 32, 366, 0, 0, 29568, 126324, 0, 0, 3714912, 9199448, 0, 0, 95402112, 188135838, 0, 0, 1143794784, 1960175880, 0, 0, 8506177920, 13291278792, 0, 0, 45758449280, 67077257280, 0, 0, 195401970432, 272569128084, 0, 0
Offset: 0

Views

Author

Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jul 12 2000

Keywords

References

  • Eichler and Zagier, The Theory of Jacobi Forms, Birkhauser, 1985.

Crossrefs

Formula

E_8*E_{4, 1}-24*phi_12.
G.f.: b(z) - 24*c(z) where b(z) is the g.f. for A055747 and c(z) is the g.f. for A003785. - Sean A. Irvine, Apr 05 2022
Showing 1-4 of 4 results.