cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008742 Molien series for 3-dimensional group [3,3 ]+ = 332.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 4, 2, 5, 4, 7, 5, 10, 7, 12, 10, 15, 12, 19, 15, 22, 19, 26, 22, 31, 26, 35, 31, 40, 35, 46, 40, 51, 46, 57, 51, 64, 57, 70, 64, 77, 70, 85, 77, 92, 85, 100, 92, 109, 100, 117, 109, 126, 117, 136
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the number of integer-sided triangles having perimeter n + 3, modulo rotations but not reflections. - James East, Oct 16 2017

Examples

			For n = 6, there are 4 rotation-classes of perimeter-9 triangles: 441, 432, 423, 333. Note that 432 and 423 are reflections of each other, but these are not rotationally equivalent. So a(6) = 4. - _James East_, Oct 16 2017
		

Crossrefs

Cf. A005044, A293819 (k-gon triangle), A293820 (polygons), A293821 (quadrilaterals), A293822 (pentagons), A293823 (hexagons)

Programs

  • GAP
    a:=[1,0,1,1,2,1,4];; for n in [8..60] do a[n]:=2*a[n-2]+a[n-3]-a[n-4] -2*a[n-5]+a[n-7]; od; a; # G. C. Greubel, Aug 03 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1+x^6)/((1-x^2)*(1-x^3)*(1-x^4)) )); // G. C. Greubel, Aug 03 2019
    
  • Mathematica
    CoefficientList[Series[(1+x^6)/((1-x^2)*(1-x^3)*(1-x^4)), {x, 0, 60}], x] (* Vaclav Kotesovec, Apr 29 2014 *)
  • PARI
    my(x='x+O('x^60)); Vec((1+x^6)/((1-x^2)*(1-x^3)*(1-x^4))) \\ G. C. Greubel, Aug 03 2019
    
  • Sage
    ((1+x^6)/((1-x^2)*(1-x^3)*(1-x^4))).series(x, 60).coefficients(x, sparse=False) # G. C. Greubel, Aug 03 2019
    

Formula

G.f.: (1+x^6)/((1-x^2)*(1-x^3)*(1-x^4)).
a(n) ~ 1/24*n^2. - Ralf Stephan, Apr 29 2014
a(n) = 1 - 19*n/24 - 5*n^2/24 + 4/3*floor(n/3) + (n/2+3/4)*floor(n/2) + 2/3*floor((n+1)/3). - Vaclav Kotesovec, Apr 29 2014
a(n) = floor((n^2+3*n+20)/24+(2*n+3)*(-1)^n/16). - Tani Akinari, Jun 20 2014
G.f.: (1-x^2+x^4)/((1+x+x^2)*(1+x)^2*(1-x)^3). - R. J. Mathar, Dec 18 2014