cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008749 Expansion of (1+x^6)/((1-x)*(1-x^2)*(1-x^3)).

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 8, 9, 12, 15, 18, 21, 26, 29, 34, 39, 44, 49, 56, 61, 68, 75, 82, 89, 98, 105, 114, 123, 132, 141, 152, 161, 172, 183, 194, 205, 218, 229, 242, 255, 268, 281, 296, 309, 324, 339, 354, 369
Offset: 0

Views

Author

Keywords

Comments

Conjecture: For n >= 1, A067628(a(n+2)) appears for the first time in A067628. Equivalently, A067628(a(n+2)) is the first T such that the minimal perimeter of polyiamonds of T triangles is a(n+2). - Winston C. Yang (winston(AT)cs.wisc.edu), Feb 05 2002

Examples

			Let n = 8. Then a(n+2) = a(10) = 18. Note A067628(18) = 12 and is the first appearance of 12 in A067628. Equivalently, 12 is the first T such that the min perimeter of polyiamonds of T triangles is 18.
		

Crossrefs

Cf. A067628.

Programs

  • GAP
    a:=[1,1,2,3,4,5];; for n in [7..60] do a[n]:=a[n-1]+a[n-2]-a[n-4] -a[n-5]+a[n-6]; od; a; # G. C. Greubel, Aug 03 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1+x^6)/((1-x)*(1-x^2)*(1-x^3)) )); // G. C. Greubel, Aug 03 2019
    
  • Mathematica
    CoefficientList[Series[(1+x^6)/((1-x)*(1-x^2)*(1-x^3)), {x,0,60}], x] (* G. C. Greubel, Aug 03 2019 *)
  • PARI
    my(x='x+O('x^60)); Vec((1+x^6)/((1-x)*(1-x^2)*(1-x^3))) \\ G. C. Greubel, Aug 03 2019
    
  • Sage
    ((1+x^6)/((1-x)*(1-x^2)*(1-x^3))).series(x, 60).coefficients(x, sparse=False) # G. C. Greubel, Aug 03 2019
    

Formula

Conjecture: Let b(n>=0) = (0, 1, 1, 1, 1, 3, 1, 3, 3, 3, 3, 5, 3, 5, 5, 5, 5, 7, 3, ...). Equivalently, let b(0) = 0, b(n>=1) = 2*floor((n-1)/6) + 1 + (2 if n+1=0 mod 6; 0 else). Then a(0) = 1, a(n>=1) = a(n-1) + b(n-1). - Winston C. Yang (winston(AT)cs.wisc.edu), Feb 05 2002
a(n) = (47 + 6*n^2 + 9*(-1)^n + 8*A099837(n+3))/36, n>0. - R. J. Mathar, Jun 24 2009