cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008762 Expansion of (1+x)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).

Original entry on oeis.org

1, 2, 3, 5, 8, 11, 15, 20, 26, 33, 41, 50, 61, 73, 86, 101, 118, 136, 156, 178, 202, 228, 256, 286, 319, 354, 391, 431, 474, 519, 567, 618, 672, 729, 789, 852, 919, 989, 1062, 1139, 1220, 1304, 1392, 1484, 1580, 1680, 1784, 1892, 2005, 2122, 2243, 2369, 2500, 2635, 2775, 2920, 3070
Offset: 0

Views

Author

Keywords

Programs

  • GAP
    a:=[1,2,3,5,8,11,15,20,26];; for n in [10..60] do a[n]:=2*a[n-1] -a[n-2]+a[n-3]-a[n-4]-a[n-5]+a[n-6]-a[n-7]+2*a[n-8]-a[n-9]; od; a; # G. C. Greubel, Sep 09 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1+x)/(&*[1-x^j: j in [1..4]]) )); // G. C. Greubel, Sep 09 2019
    
  • Maple
    seq(coeff(series( (1+x)/mul(1-x^j, j=1..4) , x, n+1), x, n), n = 0..60); # G. C. Greubel, Sep 09 2019
  • Mathematica
    CoefficientList[Series[(x+1)/Times@@(1-x^Range[4]),{x,0,60}],x] (* or *) LinearRecurrence[{2,-1,1,-1,-1,1,-1,2,-1},{1,2,3,5,8,11,15,20,26},60] (* Harvey P. Dale, Mar 19 2013 *)
  • PARI
    my(x='x+O('x^60)); Vec( (1+x)/prod(j=1,4,1-x^j) ) \\ G. C. Greubel, Sep 09 2019
    
  • Sage
    def AA008762_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x)/prod(1-x^j for j in (1..4)) ).list()
    AA008762_list(60) # G. C. Greubel, Sep 09 2019
    

Formula

a(0)=1, a(1)=2, a(2)=3, a(3)=5, a(4)=8, a(5)=11, a(6)=15, a(7)=20, a(8)=26, a(n) = 2*a(n-1) -a(n-2) +a(n-3) -a(n-4) -a(n-5) +a(n-6) -a(n-7) +2*a(n-8) -a(n-9). - Harvey P. Dale, Mar 19 2013
G.f.: 1/( (1+x)*(1+x^2)*(1+x+x^2)*(1-x)^4 ). - R. J. Mathar, Aug 06 2013

Extensions

Terms a(43) onward added by G. C. Greubel, Sep 09 2019