cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008766 Expansion of (1+x^5)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 10, 13, 18, 23, 29, 36, 45, 54, 65, 77, 91, 106, 123, 141, 162, 184, 208, 234, 263, 293, 326, 361, 399, 439, 482, 527, 576, 627, 681, 738, 799, 862, 929, 999, 1073, 1150, 1231, 1315, 1404, 1496, 1592, 1692, 1797, 1905, 2018, 2135, 2257, 2383, 2514, 2649, 2790, 2935
Offset: 0

Views

Author

Keywords

Comments

From Washington Bomfim, Jan 14 2021: (Start)
Let \n,m\ be the number of partitions of n into m non-distinct parts.
For n >= 1, \n,5\ = round((2*n^3-15*n^2+60*n-110*[n mod 2 = 0]-65*[n mod 2])/144).
For n >= 10, \n,5\ = A026811(n) - A026811(n-10).
(End)

Crossrefs

Programs

  • GAP
    a:=[1,1,2,3,5,7,10,13,18];; for n in [10..60] do a[n]:=2*a[n-1]-a[n-2]+a[n-3]-a[n-4]-a[n-5]+a[n-6]-a[n-7]+2*a[n-8]-a[n-9]; od; a; # G. C. Greubel, Sep 10 2019
    
  • Magma
    R:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1+x^5)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) )); // G. C. Greubel, Sep 10 2019
    
  • Maple
    seq(coeff(series((1+x^5)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)), x, n+1), x, n), n = 0 .. 60); # G. C. Greubel, Sep 10 2019
  • Mathematica
    CoefficientList[Series[(1+x^5)/(1-x)/(1-x^2)/(1-x^3)/(1-x^4),{x,0,60}],x] (* or *) LinearRecurrence[{2,-1,1,-1,-1,1,-1,2,-1}, {1,1,2,3,5,7,10, 13,18}, 60] (* Harvey P. Dale, Jul 24 2016 *)
  • PARI
    Vec((1+x^5)/(1-x)/(1-x^2)/(1-x^3)/(1-x^4) +O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
    
  • PARI
    seq(x) = { a = vector(x+1); my(N = 5);
    for(n=0,x, a[n+1]=round((2*N^3-15*N^2+60*N-110*!(N%2)-65*(N%2))/144); N++);a};
    seq(60) \\ Washington Bomfim, Jan 14 2021
  • Sage
    def A008766_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+x^5)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4))).list()
    A008766_list(60) # G. C. Greubel, Sep 10 2019
    

Formula

a(n) = round((2*N^3 - 15*N^2 + 60*N - 110*[N mod 2=0] - 65*[N mod 2])/144), where N = n+5. - Washington Bomfim, Jan 14 2021

Extensions

Terms a(45) onward added by G. C. Greubel, Sep 10 2019