cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008781 For any circular arrangement of 0..n-1, let S be the sum of cubes of every sum of two contiguous numbers; then a(n) is the number of distinct values of S.

Original entry on oeis.org

1, 1, 1, 3, 12, 46, 163, 405, 770, 1252, 1921, 2816, 3977, 5464, 7313
Offset: 1

Views

Author

Keywords

Examples

			Consider n = 5: and the circular arrangements of {0,1,2,3,4}. Here are the values of [ A, B, C, D, E ] (A+B)^3 + (B+C)^3 +(C+D)^3 +(D+E)^3 +(E+A)^3:
[0,1,2,3,4], (0+1)^3 + (1+2)^3 +(2+3)^3 +(3+4)^3 +(4+0)^3 = 560;
[0,1,2,4,3], (0+1)^3 + (1+2)^3 +(2+4)^3 +(4+3)^3 +(3+0)^3 = 614;
[0,1,3,2,4], (0+1)^3 + (1+3)^3 +(3+2)^3 +(2+4)^3 +(4+0)^3 = 470;
[0,1,4,2,3], (0+1)^3 + (1+4)^3 +(4+2)^3 +(2+3)^3 +(3+0)^3 = 494;
[0,1,3,4,2], (0+1)^3 + (1+3)^3 +(3+4)^3 +(4+2)^3 +(2+0)^3 = 632;
[0,1,4,3,2], (0+1)^3 + (1+4)^3 +(4+3)^3 +(3+2)^3 +(2+0)^3 = 602;
[0,2,1,3,4], (0+2)^3 + (2+1)^3 +(1+3)^3 +(3+4)^3 +(4+0)^3 = 506;
[0,2,1,4,3], (0+2)^3 + (2+1)^3 +(1+4)^3 +(4+3)^3 +(3+0)^3 = 530;
[0,3,1,2,4], (0+3)^3 + (3+1)^3 +(1+2)^3 +(2+4)^3 +(4+0)^3 = 398;
[0,4,1,2,3], (0+4)^3 + (4+1)^3 +(1+2)^3 +(2+3)^3 +(3+0)^3 = 368;
[0,3,1,4,2], (0+3)^3 + (3+1)^3 +(1+4)^3 +(4+2)^3 +(2+0)^3 = 440;
[0,4,1,3,2], (0+4)^3 + (4+1)^3 +(1+3)^3 +(3+2)^3 +(2+0)^3 = 386;
There are 12 different values, so a(5) = 12.
		

Crossrefs

Programs

  • Maple
    A008781 := proc(n)
        local msu,p,c,i ;
        msu := {} ;
        for p in combinat[permute](n-1) do
            c := [0,op(p)] ;
            s := 0 ;
            for i from 0 to n-1 do
                s := s+(c[i+1]+c[1+modp(i+1,n)])^3 ;
            end do:
            msu := msu union {s} ;
        end do:
        nops(msu) ;
    end proc: # R. J. Mathar, Jul 18 2017
  • Mathematica
    f[perm_] := Total[#]^3& /@ Partition[Join[{0}, perm, {0}], 2, 1] // Total;
    a[n_] := a[n] = f /@ Permutations[Range[n - 1]] // Union // Length;
    Reap[Do[Print[n, " ", a[n]]; Sow[a[n]], {n, 1, 12}]][[2, 1]] (* Jean-François Alcover, Feb 24 2020 *)

Extensions

Corrected by Naohiro Nomoto, Sep 10 2001
More terms from Vit Planocka (planocka(AT)mistral.cz), Sep 29 2002
a(12) from Alois P. Heinz, May 26 2013
a(13)-a(15) from Sean A. Irvine, Apr 04 2018