A008833 Largest square dividing n.
1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 4, 1, 1, 1, 16, 1, 9, 1, 4, 1, 1, 1, 4, 25, 1, 9, 4, 1, 1, 1, 16, 1, 1, 1, 36, 1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 16, 49, 25, 1, 4, 1, 9, 1, 4, 1, 1, 1, 4, 1, 1, 9, 64, 1, 1, 1, 4, 1, 1, 1, 36, 1, 1, 25, 4, 1, 1, 1, 16, 81, 1, 1, 4, 1, 1, 1, 4, 1, 9, 1, 4, 1, 1, 1, 16, 1
Offset: 1
Links
- Daniel Forgues, Table of n, a(n) for n = 1..100000
- Henry Bottomley, Some Smarandache-type multiplicative sequences
- R. J. Mathar, Survey of Dirichlet series of multiplicative arithmetic functions arXiv:1106.4038 [math.NT], 2011-2012, Remark 16.
- Andrew Reiter, On (mod n) spirals, 2014, see also posting to Number Theory Mailing List, Mar 23 2014.
- Eric Weisstein's World of Mathematics, Square part
Programs
-
Haskell
a008833 n = head $ filter ((== 0) . (mod n)) $ reverse $ takeWhile (<= n) $ tail a000290_list -- Reinhard Zumkeller, Nov 13 2011
-
Maple
A008833 := proc(n) expand(numtheory:-nthpow(n,2)) ; end proc: seq(A008833(n), n=1..100) ;
-
Mathematica
a[n_] := First[ Select[ Reverse[ Divisors[n]], IntegerQ[Sqrt[#]]&, 1]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Dec 12 2011 *) f[p_, e_] := p^(2*Floor[e/2]); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Jul 07 2020 *)
-
PARI
A008833(n)=n/core(n) \\ Michael B. Porter, Oct 17 2009
-
Python
from sympy.ntheory.factor_ import core def A008833(n): return n//core(n) # Chai Wah Wu, Dec 30 2021
Formula
Multiplicative with a(p^e) = p^(2[e/2]). - David W. Wilson, Aug 01 2001
Dirichlet g.f.: zeta(s)*zeta(2s-2)/zeta(2s). - R. J. Mathar, Oct 31 2011
Sum_{k=1..n} a(k) ~ Zeta(3/2) * n^(3/2) / (3*Zeta(3)). - Vaclav Kotesovec, Feb 01 2019
From Ridouane Oudra, May 11 2025: (Start)
a(n) = lambda(n) * Sum_{d|n} lambda(d)*d*phi(n/d).
Comments