cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 112 results. Next

A326056 a(n) = gcd(sigma(n)-A008833(n)-n, n-A008833(n)), where sigma is the sum of divisors of n, and A008833 is the largest square dividing n.

Original entry on oeis.org

1, 1, 2, 1, 4, 5, 6, 1, 5, 1, 10, 4, 12, 1, 2, 1, 16, 3, 18, 2, 10, 1, 22, 4, 19, 5, 2, 24, 28, 1, 30, 1, 2, 1, 2, 19, 36, 1, 2, 2, 40, 1, 42, 4, 12, 5, 46, 4, 41, 1, 10, 6, 52, 3, 2, 4, 2, 1, 58, 8, 60, 1, 2, 1, 2, 1, 66, 2, 2, 1, 70, 3, 72, 1, 2, 12, 2, 1, 78, 2, 41, 1, 82, 8, 2, 5, 2, 4, 88, 27, 10, 8, 2, 1, 2, 20, 96, 1, 6
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2019

Keywords

Comments

Composite numbers n such that a(n) = A326055(n) start as: 6, 28, 336, 496, 792, 8128, 31968, 3606912, ...
Nonsquare odd numbers n such that a(n) = abs(A326054(n)) start as: 21, 153, 301, 697, 1333, 1909, 1917, 2041, 3901, 4753, 24601, 24957, 26977, 29161, 29637, 56953, 67077, 96361, ...

Crossrefs

Programs

Formula

a(n) = gcd(A326054(n), A326055(n)) = gcd((A000203(n)-A008833(n))-n, n-A008833(n)).

A056191 Characteristic cube divisor of n: cube of g = gcd(K,F), where K is the largest square root divisor of n (A000188) and F = n/(K*K) = A007913(n) is its squarefree part; g^2 divides K^2 = A008833(n) = g^2*L^2 and g divides F = gf.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 27, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 27, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Labos Elemer, Aug 02 2000

Keywords

Comments

This is not the largest cube which divides n. It is canonical, since the decomposition n = KKgggf is unique (factors are defined above and dependent on n).

Examples

			If n=24, largest square divisor is 4, squarefree part is 6, g=2, a(24)=8; n=81, largest square divisor is 81, both F and g is 1, a(81)=1.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=With[{sf=Times@@Power@@@({#[[1]], Mod[#[[2]], 2]}&/@FactorInteger[n])}, GCD[sf, n/sf]]; Table[a[n]^3, {n, 1, 100}] (* Vincenzo Librandi, Oct 08 2017 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] == 1 || !(f[i,2]%2), 1,  f[i,1]^3));} \\ Amiram Eldar, Sep 05 2023

Formula

a(n) = A055229(n)^3 = g^3 = ggg; n = (KK)*(ggg)*f = K^2*g^3*f = KK*a(n)^3*f.
Multiplicative with a(p^e)=1 for even e, a(p)=1, a(p^e)=p^3 for odd e > 1. - Vladeta Jovovic, May 01 2002

A326039 Largest square dividing the sum of divisors of n: a(n) = A008833(sigma(n)).

Original entry on oeis.org

1, 1, 4, 1, 1, 4, 4, 1, 1, 9, 4, 4, 1, 4, 4, 1, 9, 1, 4, 1, 16, 36, 4, 4, 1, 1, 4, 4, 1, 36, 16, 9, 16, 9, 16, 1, 1, 4, 4, 9, 1, 16, 4, 4, 1, 36, 16, 4, 1, 1, 36, 49, 9, 4, 36, 4, 16, 9, 4, 4, 1, 16, 4, 1, 4, 144, 4, 9, 16, 144, 36, 1, 1, 1, 4, 4, 16, 4, 16, 1, 121, 9, 4, 16, 36, 4, 4, 36, 9, 9, 16, 4, 64, 144, 4, 36
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Module[{sqs=Range[100,1,-1]^2},Table[SelectFirst[sqs,Divisible[ DivisorSigma[ 1,n],#]&],{n,100}]] (* Harvey P. Dale, Jul 29 2019 *)
  • PARI
    A008833(n) = (n/core(n));
    A326039(n) = A008833(sigma(n));

Formula

a(n) = A008833(A000203(n)) = A326038(n)^2.
a(n) = A000203(n) - A326040(n).

A326040 a(n) = sigma(n) - A008833(sigma(n)).

Original entry on oeis.org

0, 2, 0, 6, 5, 8, 4, 14, 12, 9, 8, 24, 13, 20, 20, 30, 9, 38, 16, 41, 16, 0, 20, 56, 30, 41, 36, 52, 29, 36, 16, 54, 32, 45, 32, 90, 37, 56, 52, 81, 41, 80, 40, 80, 77, 36, 32, 120, 56, 92, 36, 49, 45, 116, 36, 116, 64, 81, 56, 164, 61, 80, 100, 126, 80, 0, 64, 117, 80, 0, 36, 194, 73, 113, 120, 136, 80, 164, 64, 185, 0, 117, 80
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2019

Keywords

Crossrefs

Programs

Formula

a(n) = A000203(n) - A326039(n) = A000203(n) - A008833(A000203(n)).
a(n) = A326055(A000203(n)).

A326053 Sum of all other divisors of n except the largest square divisor: a(n) = sigma(n) - A008833(n).

Original entry on oeis.org

0, 2, 3, 3, 5, 11, 7, 11, 4, 17, 11, 24, 13, 23, 23, 15, 17, 30, 19, 38, 31, 35, 23, 56, 6, 41, 31, 52, 29, 71, 31, 47, 47, 53, 47, 55, 37, 59, 55, 86, 41, 95, 43, 80, 69, 71, 47, 108, 8, 68, 71, 94, 53, 111, 71, 116, 79, 89, 59, 164, 61, 95, 95, 63, 83, 143, 67, 122, 95, 143, 71, 159, 73, 113, 99, 136, 95, 167, 79, 170, 40, 125, 83
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2019

Keywords

Crossrefs

Programs

Formula

a(n) = A000203(n) - A008833(n).
a(n) = n + A326054(n).
a(n) >= A285309(n).

A326044 a(n) = n - {the largest square dividing its sum of divisors}: a(n) = n - A008833(sigma(n)).

Original entry on oeis.org

0, 1, -1, 3, 4, 2, 3, 7, 8, 1, 7, 8, 12, 10, 11, 15, 8, 17, 15, 19, 5, -14, 19, 20, 24, 25, 23, 24, 28, -6, 15, 23, 17, 25, 19, 35, 36, 34, 35, 31, 40, 26, 39, 40, 44, 10, 31, 44, 48, 49, 15, 3, 44, 50, 19, 52, 41, 49, 55, 56, 60, 46, 59, 63, 61, -78, 63, 59, 53, -74, 35, 71, 72, 73, 71, 72, 61, 74, 63, 79, -40
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2019

Keywords

Crossrefs

Programs

Formula

a(n) = n - A326039(n) = n - A008833(A000203(n)).
a(n) = A033879(n) + A326045(n).

A326045 a(n) is the sum of divisors of n, minus the largest square dividing that sum, minus n: a(n) = sigma(n) - A008833(sigma(n)) - n.

Original entry on oeis.org

-1, 0, -3, 2, 0, 2, -3, 6, 3, -1, -3, 12, 0, 6, 5, 14, -8, 20, -3, 21, -5, -22, -3, 32, 5, 15, 9, 24, 0, 6, -15, 22, -1, 11, -3, 54, 0, 18, 13, 41, 0, 38, -3, 36, 32, -10, -15, 72, 7, 42, -15, -3, -8, 62, -19, 60, 7, 23, -3, 104, 0, 18, 37, 62, 15, -66, -3, 49, 11, -70, -35, 122, 0, 39, 45, 60, 3, 86, -15, 105, -81, 35, -3
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2019

Keywords

Crossrefs

Programs

Formula

a(n) = A326040(n) - n = sigma(n) - A008833(sigma(n)) - n.

A336642 One less than the largest square dividing n: a(n) = A008833(n)-1.

Original entry on oeis.org

0, 0, 0, 3, 0, 0, 0, 3, 8, 0, 0, 3, 0, 0, 0, 15, 0, 8, 0, 3, 0, 0, 0, 3, 24, 0, 8, 3, 0, 0, 0, 15, 0, 0, 0, 35, 0, 0, 0, 3, 0, 0, 0, 3, 8, 0, 0, 15, 48, 24, 0, 3, 0, 8, 0, 3, 0, 0, 0, 3, 0, 0, 8, 63, 0, 0, 0, 3, 0, 0, 0, 35, 0, 0, 24, 3, 0, 0, 0, 15, 80, 0, 0, 3, 0, 0, 0, 3, 0, 8, 0, 3, 0, 0, 0, 15, 0, 48, 8, 99, 0, 0, 0, 3, 0
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2020

Keywords

Crossrefs

Cf. A008833.
Cf. also A336551, A336641, A336644.

Programs

  • PARI
    A336642(n) = ((n/core(n))-1);

A283989 Largest square dividing prime factorization representation of the n-th Stern polynomial: a(n) = A008833(A260443(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 9, 1, 1, 1, 9, 25, 9, 1, 225, 1, 1, 1, 9, 25, 225, 49, 2025, 25, 225, 1, 225, 1225, 225, 1, 11025, 1, 1, 1, 9, 25, 11025, 49, 50625, 1225, 275625, 121, 2480625, 30625, 1265625, 49, 2480625, 1225, 11025, 1, 11025, 1225, 275625, 5929, 2480625, 1225, 275625
Offset: 0

Views

Author

Antti Karttunen, Mar 25 2017

Keywords

Crossrefs

Cf. A023758 (positions of ones).

Programs

Formula

a(n) = A008833(A260443(n)).
a(n) = A260443(n) / A277330(n).
a(n) = A283983(n)^2.
a(2n) = A003961(a(n)).

A336641 Numbers k such that A007913(k) divides sigma(k) and A008833(k)-1 either divides A326127(k) (= sigma(k)-core(k)-k), or both are zero.

Original entry on oeis.org

6, 24, 28, 96, 120, 150, 294, 384, 496, 1014, 1536, 3276, 3750, 3780, 6144, 8128, 14406, 20328, 24576, 32760, 93750, 98304, 171366, 306180, 393216, 705894, 1241460, 1572864, 2343750, 6291456, 16380000, 24800580, 25165824, 28960854, 30387840, 33550336, 34588806, 58593750, 100663296, 165143160, 332226048, 402653184
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2020

Keywords

Comments

Numbers k such that A326128(k) = A326129(k) form a subsequence of this sequence. So far it is not known whether it contains any other terms apart from those of A000396. See comments in A326129.
Sequence is infinite because all numbers of the form 6*4^n (A002023) are present.
Question: Are there any odd terms?

Crossrefs

Cf. A000396, A002023 (subsequences).
Cf. also A336550 for a similar construction.

Programs

  • PARI
    isA336641(n) = { my(c=core(n), s=sigma(n), u=((n/c)-1)); (!(s%c) && (gcd(u,(s-c-n))==u)); };
Showing 1-10 of 112 results. Next