cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A326128 a(n) = n - A007913(n), where A007913 gives the squarefree part of n.

Original entry on oeis.org

0, 0, 0, 3, 0, 0, 0, 6, 8, 0, 0, 9, 0, 0, 0, 15, 0, 16, 0, 15, 0, 0, 0, 18, 24, 0, 24, 21, 0, 0, 0, 30, 0, 0, 0, 35, 0, 0, 0, 30, 0, 0, 0, 33, 40, 0, 0, 45, 48, 48, 0, 39, 0, 48, 0, 42, 0, 0, 0, 45, 0, 0, 56, 63, 0, 0, 0, 51, 0, 0, 0, 70, 0, 0, 72, 57, 0, 0, 0, 75, 80, 0, 0, 63, 0, 0, 0, 66, 0, 80, 0, 69, 0, 0, 0, 90, 0, 96, 88, 99, 0, 0, 0, 78, 0
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^Mod[e, 2]; a[n_] := n - Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Mar 21 2024 *)
  • PARI
    A326128(n) = (n-core(n));

Formula

a(n) = n - A007913(n).
a(n) = A326127(n) + A033879(n).
a(n) >= A066503(n).
a(n) = A007913(n) * A336642(n). - Antti Karttunen, Jul 28 2020
Sum_{k=1..n} a(k) ~ c * n^2, where c = 1/2 - Pi^2/30 = 0.171013... . - Amiram Eldar, Mar 21 2024

A336641 Numbers k such that A007913(k) divides sigma(k) and A008833(k)-1 either divides A326127(k) (= sigma(k)-core(k)-k), or both are zero.

Original entry on oeis.org

6, 24, 28, 96, 120, 150, 294, 384, 496, 1014, 1536, 3276, 3750, 3780, 6144, 8128, 14406, 20328, 24576, 32760, 93750, 98304, 171366, 306180, 393216, 705894, 1241460, 1572864, 2343750, 6291456, 16380000, 24800580, 25165824, 28960854, 30387840, 33550336, 34588806, 58593750, 100663296, 165143160, 332226048, 402653184
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2020

Keywords

Comments

Numbers k such that A326128(k) = A326129(k) form a subsequence of this sequence. So far it is not known whether it contains any other terms apart from those of A000396. See comments in A326129.
Sequence is infinite because all numbers of the form 6*4^n (A002023) are present.
Question: Are there any odd terms?

Crossrefs

Cf. A000396, A002023 (subsequences).
Cf. also A336550 for a similar construction.

Programs

  • PARI
    isA336641(n) = { my(c=core(n), s=sigma(n), u=((n/c)-1)); (!(s%c) && (gcd(u,(s-c-n))==u)); };

A336644 a(n) = (n-rad(n)) / core(n), where rad(n) and core(n) give the squarefree kernel and squarefree part of n, respectively.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 3, 6, 0, 0, 2, 0, 0, 0, 14, 0, 6, 0, 2, 0, 0, 0, 3, 20, 0, 8, 2, 0, 0, 0, 15, 0, 0, 0, 30, 0, 0, 0, 3, 0, 0, 0, 2, 6, 0, 0, 14, 42, 20, 0, 2, 0, 8, 0, 3, 0, 0, 0, 2, 0, 0, 6, 62, 0, 0, 0, 2, 0, 0, 0, 33, 0, 0, 20, 2, 0, 0, 0, 14, 78, 0, 0, 2, 0, 0, 0, 3, 0, 6, 0, 2, 0, 0, 0, 15, 0, 42, 6, 90, 0, 0, 0, 3, 0
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2020

Keywords

Crossrefs

Programs

  • PARI
    A336644(n) = ((n-factorback(factorint(n)[, 1])) / core(n));
    
  • Python
    from math import prod
    from sympy.ntheory.factor_ import primefactors, core
    def A336644(n): return (n-prod(primefactors(n)))//core(n) # Chai Wah Wu, Dec 30 2021

Formula

a(n) = A066503(n) / A007913(n) = (n-A007947(n)) / A007913(n).
a(n) = A008833(n) - A336643(n).
Showing 1-3 of 3 results.