cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A326054 a(n) = A326053(n) - n, where A326053 gives the sum of all other divisors of n except the largest square divisor.

Original entry on oeis.org

-1, 0, 0, -1, 0, 5, 0, 3, -5, 7, 0, 12, 0, 9, 8, -1, 0, 12, 0, 18, 10, 13, 0, 32, -19, 15, 4, 24, 0, 41, 0, 15, 14, 19, 12, 19, 0, 21, 16, 46, 0, 53, 0, 36, 24, 25, 0, 60, -41, 18, 20, 42, 0, 57, 16, 60, 22, 31, 0, 104, 0, 33, 32, -1, 18, 77, 0, 54, 26, 73, 0, 87, 0, 39, 24, 60, 18, 89, 0, 90, -41, 43, 0, 136, 22, 45, 32, 88, 0, 135, 20
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2019

Keywords

Crossrefs

Programs

Formula

a(n) = A326053(n) - n = (A000203(n) - A008833(n)) - n.
a(n) = A326055(n) - A033879(n).

A326056 a(n) = gcd(sigma(n)-A008833(n)-n, n-A008833(n)), where sigma is the sum of divisors of n, and A008833 is the largest square dividing n.

Original entry on oeis.org

1, 1, 2, 1, 4, 5, 6, 1, 5, 1, 10, 4, 12, 1, 2, 1, 16, 3, 18, 2, 10, 1, 22, 4, 19, 5, 2, 24, 28, 1, 30, 1, 2, 1, 2, 19, 36, 1, 2, 2, 40, 1, 42, 4, 12, 5, 46, 4, 41, 1, 10, 6, 52, 3, 2, 4, 2, 1, 58, 8, 60, 1, 2, 1, 2, 1, 66, 2, 2, 1, 70, 3, 72, 1, 2, 12, 2, 1, 78, 2, 41, 1, 82, 8, 2, 5, 2, 4, 88, 27, 10, 8, 2, 1, 2, 20, 96, 1, 6
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2019

Keywords

Comments

Composite numbers n such that a(n) = A326055(n) start as: 6, 28, 336, 496, 792, 8128, 31968, 3606912, ...
Nonsquare odd numbers n such that a(n) = abs(A326054(n)) start as: 21, 153, 301, 697, 1333, 1909, 1917, 2041, 3901, 4753, 24601, 24957, 26977, 29161, 29637, 56953, 67077, 96361, ...

Crossrefs

Programs

Formula

a(n) = gcd(A326054(n), A326055(n)) = gcd((A000203(n)-A008833(n))-n, n-A008833(n)).

A326126 Sum of all other divisors of n except the squarefree part of n: a(n) = sigma(n) - A007913(n).

Original entry on oeis.org

0, 1, 1, 6, 1, 6, 1, 13, 12, 8, 1, 25, 1, 10, 9, 30, 1, 37, 1, 37, 11, 14, 1, 54, 30, 16, 37, 49, 1, 42, 1, 61, 15, 20, 13, 90, 1, 22, 17, 80, 1, 54, 1, 73, 73, 26, 1, 121, 56, 91, 21, 85, 1, 114, 17, 106, 23, 32, 1, 153, 1, 34, 97, 126, 19, 78, 1, 109, 27, 74, 1, 193, 1, 40, 121, 121, 19, 90, 1, 181, 120, 44, 1, 203, 23, 46, 33, 158, 1, 224, 21
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := (p^(e + 1) - 1)/(p - 1); f2[p_, e_] := p^Mod[e, 2]; a[n_] := Module[{f = FactorInteger[n]}, Times @@ f1 @@@ f - Times @@ f2 @@@ f]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Mar 21 2024 *)
  • PARI
    A326126(n) = (sigma(n)-core(n));

Formula

a(n) = A000203(n) - A007913(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/20 = 0.4934802... . - Amiram Eldar, Mar 21 2024

A326142 Sum of all other divisors of n except its largest squarefree divisor: a(n) = sigma(n) - A007947(n).

Original entry on oeis.org

0, 1, 1, 5, 1, 6, 1, 13, 10, 8, 1, 22, 1, 10, 9, 29, 1, 33, 1, 32, 11, 14, 1, 54, 26, 16, 37, 42, 1, 42, 1, 61, 15, 20, 13, 85, 1, 22, 17, 80, 1, 54, 1, 62, 63, 26, 1, 118, 50, 83, 21, 72, 1, 114, 17, 106, 23, 32, 1, 138, 1, 34, 83, 125, 19, 78, 1, 92, 27, 74, 1, 189, 1, 40, 109, 102, 19, 90, 1, 176, 118, 44, 1, 182, 23, 46, 33
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Crossrefs

Programs

  • Mathematica
    rad[n_] := Times @@ FactorInteger[n][[;; , 1]]; a[n_] := DivisorSigma[1, n] - rad[n]; Array[a, 100] (* Amiram Eldar, Dec 05 2023 *)
  • PARI
    A007947(n) = factorback(factorint(n)[, 1]);
    A326142(n) = (sigma(n)-A007947(n));

Formula

a(n) = A000203(n) - A007947(n).
a(n) = n + A326143(n).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A013661 - A065463 = 0.940491... . - Amiram Eldar, Dec 05 2023

A326061 Sum of all other divisors of n except the largest proper divisor. a(1) = 0 by convention.

Original entry on oeis.org

0, 2, 3, 5, 5, 9, 7, 11, 10, 13, 11, 22, 13, 17, 19, 23, 17, 30, 19, 32, 25, 25, 23, 48, 26, 29, 31, 42, 29, 57, 31, 47, 37, 37, 41, 73, 37, 41, 43, 70, 41, 75, 43, 62, 63, 49, 47, 100, 50, 68, 55, 72, 53, 93, 61, 92, 61, 61, 59, 138, 61, 65, 83, 95, 71, 111, 67, 92, 73, 109, 71, 159, 73, 77, 99, 102, 85, 129, 79, 146, 94, 85, 83
Offset: 1

Views

Author

Antti Karttunen, Jun 06 2019

Keywords

Crossrefs

Programs

Formula

a(n) = A000203(n) - A032742(n).
For n > 1, a(n) = n + A318505(n).
Showing 1-5 of 5 results.