cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A326046 a(n) = gcd(n-A326039(n), A326040(n)-n).

Original entry on oeis.org

1, 1, 1, 1, 4, 2, 3, 1, 1, 1, 1, 4, 12, 2, 1, 1, 8, 1, 3, 1, 5, 2, 1, 4, 1, 5, 1, 24, 28, 6, 15, 1, 1, 1, 1, 1, 36, 2, 1, 1, 40, 2, 3, 4, 4, 10, 1, 4, 1, 7, 15, 3, 4, 2, 19, 4, 1, 1, 1, 8, 60, 2, 1, 1, 1, 6, 3, 1, 1, 2, 35, 1, 72, 1, 1, 12, 1, 2, 3, 1, 1, 1, 1, 4, 1, 2, 1, 4, 8, 27, 5, 8, 29, 2, 7, 60, 48, 1, 1, 1, 100, 6, 3, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Jun 06 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A326044(n), A326045(n)) = gcd(n-A326039(n), A326040(n)-n).

A326039 Largest square dividing the sum of divisors of n: a(n) = A008833(sigma(n)).

Original entry on oeis.org

1, 1, 4, 1, 1, 4, 4, 1, 1, 9, 4, 4, 1, 4, 4, 1, 9, 1, 4, 1, 16, 36, 4, 4, 1, 1, 4, 4, 1, 36, 16, 9, 16, 9, 16, 1, 1, 4, 4, 9, 1, 16, 4, 4, 1, 36, 16, 4, 1, 1, 36, 49, 9, 4, 36, 4, 16, 9, 4, 4, 1, 16, 4, 1, 4, 144, 4, 9, 16, 144, 36, 1, 1, 1, 4, 4, 16, 4, 16, 1, 121, 9, 4, 16, 36, 4, 4, 36, 9, 9, 16, 4, 64, 144, 4, 36
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Module[{sqs=Range[100,1,-1]^2},Table[SelectFirst[sqs,Divisible[ DivisorSigma[ 1,n],#]&],{n,100}]] (* Harvey P. Dale, Jul 29 2019 *)
  • PARI
    A008833(n) = (n/core(n));
    A326039(n) = A008833(sigma(n));

Formula

a(n) = A008833(A000203(n)) = A326038(n)^2.
a(n) = A000203(n) - A326040(n).

A326055 a(n) = n - {the largest square that divides n}.

Original entry on oeis.org

0, 1, 2, 0, 4, 5, 6, 4, 0, 9, 10, 8, 12, 13, 14, 0, 16, 9, 18, 16, 20, 21, 22, 20, 0, 25, 18, 24, 28, 29, 30, 16, 32, 33, 34, 0, 36, 37, 38, 36, 40, 41, 42, 40, 36, 45, 46, 32, 0, 25, 50, 48, 52, 45, 54, 52, 56, 57, 58, 56, 60, 61, 54, 0, 64, 65, 66, 64, 68, 69, 70, 36, 72, 73, 50, 72, 76, 77, 78, 64, 0, 81, 82, 80, 84
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2019

Keywords

Crossrefs

Programs

Formula

a(n) = n - A008833(n).
a(n) = A326054(n) + A033879(n).
a(A000203(n)) = A326040(n).

A326045 a(n) is the sum of divisors of n, minus the largest square dividing that sum, minus n: a(n) = sigma(n) - A008833(sigma(n)) - n.

Original entry on oeis.org

-1, 0, -3, 2, 0, 2, -3, 6, 3, -1, -3, 12, 0, 6, 5, 14, -8, 20, -3, 21, -5, -22, -3, 32, 5, 15, 9, 24, 0, 6, -15, 22, -1, 11, -3, 54, 0, 18, 13, 41, 0, 38, -3, 36, 32, -10, -15, 72, 7, 42, -15, -3, -8, 62, -19, 60, 7, 23, -3, 104, 0, 18, 37, 62, 15, -66, -3, 49, 11, -70, -35, 122, 0, 39, 45, 60, 3, 86, -15, 105, -81, 35, -3
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2019

Keywords

Crossrefs

Programs

Formula

a(n) = A326040(n) - n = sigma(n) - A008833(sigma(n)) - n.

A326038 Square root of the largest square dividing the sum of divisors of n: a(n) = A000188(sigma(n)).

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 2, 1, 3, 1, 2, 1, 4, 6, 2, 2, 1, 1, 2, 2, 1, 6, 4, 3, 4, 3, 4, 1, 1, 2, 2, 3, 1, 4, 2, 2, 1, 6, 4, 2, 1, 1, 6, 7, 3, 2, 6, 2, 4, 3, 2, 2, 1, 4, 2, 1, 2, 12, 2, 3, 4, 12, 6, 1, 1, 1, 2, 2, 4, 2, 4, 1, 11, 3, 2, 4, 6, 2, 2, 6, 3, 3, 4, 2, 8, 12, 2, 6, 7, 3, 2, 1, 1, 6, 2, 1, 8
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2019

Keywords

Crossrefs

Programs

Formula

a(n) = A000188(A000203(n)) = A000196(A326039(n)).
Showing 1-5 of 5 results.